Friák, M.; Tytko, D.; Holec, D.; Choi, P.-P.; Eisenlohr, P.; Raabe, D.; Neugebauer, J.: Synergy of atom-probe structural data and quantum-mechanical calculations in a theory-guided design of extreme-stiffness superlattices containing metastable phases. New Journal of Physics 17 (9), 093004 (2015)
Tytko, D.; Choi, P.-P.; Raabe, D.: Thermal dissolution mechanisms of AlN/CrN hard coating superlattices studied by atom probe tomography and transmission electron microscopy. Acta Materialia 85, pp. 32 - 41 (2015)
Sandim, M. J. R.; Tytko, D.; Kostka, A.; Choi, P.; Awaji, S.; Watanabe, K.; Raabe, D.: Grain boundary segregation in a bronze-route Nb3Sn superconducting wire studied by atom probe tomography. Superconductor Science and Technology 26, pp. 055008-1 - 055008-7 (2013)
Tytko, D.; Choi, P.-P.; Klöwer, J.; Inden, G.; Raabe, D.: Microstructural evolution of a Ni-based superalloy (617B) at 700 °C studied by electron microscopy and atom probe tomography. Acta Materialia 60 (4), pp. 1731 - 1740 (2012)
Jägle, E. A.; Tytko, D.; Choi, P.-P.; Raabe, D.: Deformation-induced intermixing in a model multilayer system. Atom Probe Tomography & Microscopy 2014, Stuttgart, Germany (2014)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Local lattice distortion is one of the core effects in complex concentrated alloys (CCAs). It has been expected that the strength CCAs can be improved by inducing larger local lattice distortions. In collaboration with experimentalists, we demonstrated that VCoNi has larger local lattice distortions and indeed has much better strength than the…