Todorova, M.: Aqueious corrosion from the perspective of semiconductor defect chemistry: New tools and insights. CMRI Workshop on Computational Study of Corrosion, IMR, Tohoku University, Sendai, Japan (2015)
Vatti, A. K.; Todorova, M.; Neugebauer, J.: Formation Energy of ions in water: An ab initio molecular dynamics study. 2nd German-Austrian Workshop on "Computational Materials Science on Complex Energy Landscapes", Kirchdorf, Austria (2015)
Todorova, M.: Stability and defect chemistry of zinc oxide in contact with an electrochemical environment: An ab initio approach. Helmholtz-Zentrum Berlin , Berlin, Germany (2014)
Todorova, M.: Connecting defect chemistry in semiconductors and electrochemistry. ICMR Workshop on Ab-initio description of charged systems and solid/liquid interfaces for semiconductors and electrochemistry, University of California, Santa Barbara, CA, USA (2014)
Todorova, M.: Stability and defect chemistry of oxides in contact with an electrochemical environment: An ab initio approach. Talk at University of California, Santa Barbara, CA, USA (2014)
Vatti, A. K.; Todorova, M.; Neugebauer, J.: Modelling Mica from first-principles. 1st Dutch/German Workshop on Computational Materials Design, Balk, The Netherlands (2013)
Ilhan, M.; Todorova, M.; Neugebauer, J.: Adsorption of H, S, and O on the Iron (100) surface. 1st Dutch/German Workshop on Computational Materials Design, Balk, The Netherlands (2013)
Izanlou, A.; Todorova, M.; Neugebauer, J.: Interactions of water and its derivatives with low index Fe3Al surfaces. 1st Dutch/German Workshop on Computational Materials Design, Balk, The Netherlands (2013)
Nykänen, L.; Todorova, M.; Neugebauer, J.: Ab initio modelling of platinum oxides. 1st Dutch/German Workshop on Computational Materials Design, Balk, The Netherlands (2013)
Todorova, M.; Neugebauer, J.: The Nernst equation in the context of semiconductor defect chemistry. 1st Dutch/German Workshop on Computational Materials Design, Balk, The Netherlands (2013)
Cheng, S.-T.; Todorova, M.; Neugebauer, J.: Interactions of oxidizing species with the Mg(0001) surface: The role of electrostatic contributions. DPG Frühjahrstagung, Regensburg, Germany (2013)
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
Oxidation and corrosion of noble metals is a fundamental problem of crucial importance in the advancement of the long-term renewable energy concept strategy. In our group we use state-of-the-art electrochemical scanning flow cell (SFC) coupled with inductively coupled plasma mass spectrometer (ICP-MS) setup to address the problem.
For understanding the underlying hydrogen embrittlement mechanism in transformation-induced plasticity steels, the process of damage evolution in a model austenite/martensite dual-phase microstructure following hydrogenation was investigated through multi-scale electron channelling contrast imaging and in situ optical microscopy.
We plan to investigate the rate-dependent tensile properties of 2D materials such as metal thin films and PbMoO4 (PMO) films by using a combination of a novel plan-view FIB based sample lift out method and a MEMS based in situ tensile testing platform inside a TEM.
This project aims to investigate the influence of grain boundaries on mechanical behavior at ultra-high strain rates and low temperatures. For this micropillar compressions on copper bi-crystals containing different grain boundaries will be performed.
Hydrogen induced embrittlement of metals is one of the long standing unresolved problems in Materials Science. A hierarchical multiscale approach is used to investigate the underlying atomistic mechanisms.
Hydrogen embrittlement affects high-strength ferrite/martensite dual-phase (DP) steels. The associated micromechanisms which lead to failure have not been fully clarified yet. Here we present a quantitative micromechanical analysis of the microstructural damage phenomena in a model DP steel in the presence of hydrogen.
We will investigate the electrothermomechanical response of individual metallic nanowires as a function of microstructural interfaces from the growth processes. This will be accomplished using in situ SEM 4-point probe-based electrical resistivity measurements and 2-point probe-based impedance measurements, as a function of mechanical strain and…
The project aims to study corrosion, a detrimental process with an enormous impact on global economy, by combining denstiy-functional theory calculations with thermodynamic concepts.