Fabritius, H.; Nikolov, S.; Hild, S.; Ziegler, A.; Friák, M.; Neugebauer, J.; Raabe, D.: Design Principles of Load-bearing Cuticle from different Crustacean Species evaluated experimentally and by Ab initio-based Multiscale Simulations. MRS Fall Meeting 2010, Boston, MA, USA (2010)
Hild, S.; Huemer, K.; Seidl, B.; Ziegler, A. S.; Fabritius, H.-O.; Raabe, D.: Crustacean cuticle: An example to study the influence of chemical composition and microstructure on the mechanical properties of hierarchically structured biological composite materials. Workshop Prospects in BIONIC, Leoben, Austria (2010)
Fabritius, H.; Hild, S.; Nikolov, S.; Ziegler, A.; Raabe, D.; Friák, M.; Neugebauer, J.: Variations in the constructional morphology of crustacean skeletal elements at different hierarchical levels. Third International Conference on Mechanics of Biomaterials & Tissues ICMOBT 2009, Clearwater, FL, USA (2009)
Hild, S.; Ziegler, A.; Neues, F.; Epple, M.; Fabritius, H.; Raabe, D.: The Crustacean Cuticle: A Model to Study the Influence of Chemical Composition and Microstructure on the Mechanical Properties of a Biological Composite Material. MRS Fall Conference 2008, Boston, MA, USA (2008)
Hild, S.: Isopod cuticle: A model for the characterization of the structure and the chemical composition of biocomposite materials. BASF, Ludwigshafen, Germany (2008)
Hild, S.; Marti, O.; Ziegler, A.: Isopod cuticle: A model system to study the influence of the structure and the chemical composition on the mechanics of biological composite materials. Frühjahrstagung der Deutschen Physikalischen Gesellschaft, Arbeitskreis Festkörkerphysik, Berlin, Germany (2008)
Hild, S.; Ziegler, A.: The isopod exoskeleton: A model to study formation and function of amorphous calcium carbonate in calcified tissues. Frühjahrstagung der Deutschen Physikalischen Gesellschaft, Arbeitskreis Festkörkerphysik, Berlin, Germany (2008)
Hild, S.: Isopoda: Crustacean models to study microstructure and properties of biological composite materials. Seminar talk at MPI für Eisenforschung GmbH, Düsseldorf, Germany (2008)
Fabritius, H.; Sachs, C.; Nikolov, S.; Romano, P.; Hild, S.; Raabe, D.: Wie beeinflussen Struktur und chemische Zusammensetzung auf unterschiedlichen Längenskalen die mechanischen Eigenschaften von biologischen Materialien ? Institute Colloquium, Department of Polymer Science, Johannes Kepler University Linz (JKU), Linz, Austria (2008)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
This project will aim at developing MEMS based nanoforce sensors with capacitive sensing capabilities. The nanoforce sensors will be further incorporated with in situ SEM and TEM small scale testing systems, for allowing simultaneous visualization of the deformation process during mechanical tests
The utilization of Kelvin Probe (KP) techniques for spatially resolved high sensitivity measurement of hydrogen has been a major break-through for our work on hydrogen in materials. A relatively straight forward approach was hydrogen mapping for supporting research on hydrogen embrittlement that was successfully applied on different materials, and…
It is very challenging to simulate electron-transfer reactions under potential control within high-level electronic structure theory, e. g. to study electrochemical and electrocatalytic reaction mechanisms. We develop a novel method to sample the canonical NVTΦ or NpTΦ ensemble at constant electrode potential in ab initio molecular dynamics…
Photovoltaic materials have seen rapid development in the past decades, propelling the global transition towards a sustainable and CO2-free economy. Storing the day-time energy for night-time usage has become a major challenge to integrate sizeable solar farms into the electrical grid. Developing technologies to convert solar energy directly into…
Crystal Plasticity (CP) modeling [1] is a powerful and well established computational materials science tool to investigate mechanical structure–property relations in crystalline materials. It has been successfully applied to study diverse micromechanical phenomena ranging from strain hardening in single crystals to texture evolution in…