Luo, W.; Kirchlechner, C.; Fang, X.; Brinckmann, S.; Dehm, G.; Stein, F.: Influence of composition and crystal structure on the fracture toughness of NbCo2 Laves phase studied by micro-cantilever bending tests. Materials and Design 145, pp. 116 - 121 (2018)
Brinckmann, S.; Matoy, K.; Kirchlechner, C.; Dehm, G.: On the influence of microcantilever pre-crack geometries on the apparent fracture toughness of brittle materials. Acta Materialia 136, pp. 281 - 287 (2017)
Brinckmann, S.; Kirchlechner, C.; Dehm, G.: Stress intensity factor dependence on anisotropy and geometry during micro-fracture experiments. Scripta Materialia 127, pp. 76 - 78 (2017)
Boyce, B. L.; Kramer, S. L. B.; Fang, H. E.; Cordova, T. E.; Neilsen, M. K.; Dion, K. N.; Kaczmarowski, A. K.; Karasz, E.; Xue, L.; Gross, A. J.et al.; Ghahremaninezhad, A.; Ravi-Chandar, K.; Lin, S.-P.; Chi, S.-W.; Chen, J.-S.; Yreux, E.; Rüter, M.; Qian, D.; Zhou, Z.; Bhamare, S.; O'Connor, D. T.; Tang, S.; Elkhodary, K. I.; Zhao, J.; Hochhalter, J. D.; Cerrone, A. R.; Ingraffea, A. R.; Wawrzynek, P. A.; Carter, B. J.; Emery, J. M.; Veilleux, M. G.; Yang, P.; Gan, Y.; Zhang, X.; Chen, Z.; Madenci, E.; Kilic, B.; Zhang, T.; Fang, E.; Liu, P.; Lua, J. Y.; Nahshon, K.; Miraglia, M.; Cruce, J.; Defrese, R.; Moyer, E. T.; Brinckmann, S.; Quinkert, L.; Pack, K.; Luo, M.; Wierzbicki, T.: The sandia fracture challenge: Blind round robin predictions of ductile tearing. International Journal of Fracture 186 (1-2), pp. 5 - 68 (2014)
Brinckmann, S.; Quinkert, L.: Ductile tearing: Applicability of a modular approach using cohesive zones and damage mechanics. International Journal of Fracture 186 (1-2), pp. 141 - 154 (2014)
Tsybenko, H.; Dehm, G.; Brinckmann, S.: Deformation and chemical evolution in cementite (Fe3C) during small-scale tribology. European Congress and Exhibition on Advanced Materials and Processes - EUROMAT 2021, Virtual (2021)
Tsybenko, H.; Dehm, G.; Brinckmann, S.: Deformation and chemical evolution during tribology in cementite. Materials Science and Engineering Congress (MSE) 2020, online, Darmstadt, Germany (2020)
Brinckmann, S.; Dehm, G.: Severe deformation of a lamellar microstructure: pearlitic steel as a case study. TMS 2019 Annual Meeting & Exhibition, San Antonio, TX, USA (2019)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
This project will aim at developing MEMS based nanoforce sensors with capacitive sensing capabilities. The nanoforce sensors will be further incorporated with in situ SEM and TEM small scale testing systems, for allowing simultaneous visualization of the deformation process during mechanical tests
The utilization of Kelvin Probe (KP) techniques for spatially resolved high sensitivity measurement of hydrogen has been a major break-through for our work on hydrogen in materials. A relatively straight forward approach was hydrogen mapping for supporting research on hydrogen embrittlement that was successfully applied on different materials, and…
It is very challenging to simulate electron-transfer reactions under potential control within high-level electronic structure theory, e. g. to study electrochemical and electrocatalytic reaction mechanisms. We develop a novel method to sample the canonical NVTΦ or NpTΦ ensemble at constant electrode potential in ab initio molecular dynamics…
Photovoltaic materials have seen rapid development in the past decades, propelling the global transition towards a sustainable and CO2-free economy. Storing the day-time energy for night-time usage has become a major challenge to integrate sizeable solar farms into the electrical grid. Developing technologies to convert solar energy directly into…
Crystal Plasticity (CP) modeling [1] is a powerful and well established computational materials science tool to investigate mechanical structure–property relations in crystalline materials. It has been successfully applied to study diverse micromechanical phenomena ranging from strain hardening in single crystals to texture evolution in…