Dehm, G.; Rühle, M.; Conway, H. D.; Raj, R.: A microindentation method for estimating interfacial shear strength and its use in studying the influence of titanium transition layers on the interface strength of epitaxial copper films on sapphire. Acta Materialia 45 (2), pp. 489 - 499 (1997)
Dehm, G.; Scheu, C.; Raj, R.; Rühle, M.: Growth, structure and interfaces of Cu and Cu/Ti thin films on (0001)alpha-Al2O3. Materials Science Forum 207-209 (1), pp. 217 - 220 (1996)
Dehm, G.; Raj, R.; Rühle, M.: Influence of Interfacial Layers on the Ultimate Shear Strength of Copper/Sapphire Interfaces. Materials Science Forum 207-209 (2), pp. 597 - 600 (1996)
Möbus, G.; Schumann, E.; Dehm, G.; Rühle, M.: Measurement of Coherency States of Metal-Ceramic Interfaces by HRTEM Image Processing. Physica Status Solidi A 150 (1), pp. 77 - 87 (1995)
Dehm, G.; Rühle, M.; Ding, G.; Raj, R.: Growth and Structure of Copper Thin Films Deposited on (0001) Sapphire by Molecular Beam Epitaxy. Philosophical Magazine B-Physics of Condensed Matter Statistical Mechanics Electronic Optical and Magnetic Properties 71 (6), pp. 1111 - 1124 (1995)
Kirchlechner, C.; Kečkéš, J.; Micha, J.-S.; Dehm, G.: In Situ μLaue: Instrumental Setup for the Deformation of Micron Sized Samples. In: Neutrons and Synchrotron Radiation in Engineering Materials Science: From Fundamentals to Applications: Second Edition, pp. 425 - 438 (Eds. Staron, P.; Schreyer, A.; Clemens, H.; Mayer, S.). wiley, Hoboken, NJ, USA (2017)
Dehm, G.; Legros, M.; Kiener, D.: In-situ TEM Straining Experiments: Recent Progress in Stages and Small-Scale Mechanics. In: In-situ Electron Microscopy: SEM and TEM Applications in Physics, Chemistry and Materials Science, pp. 227 - 254 (Ed. Dehm, G.). Wiley VCH Verlag, Weinheim, Germany (2012)
Dehm, G.: Das Erich-Schmid-Institut für Materialwissenschaft (ESI) der Österreichischen Akademie der Wissenschaften. In: Handbuch der Nanoanalytik Steiermark, NanoNet Styria, 1 Ed., pp. 1 - 311 (Ed. Rom , W.). W. Rom, Graz, Austria (2005)
Dehm, G.; Müllner, P.: TEM-Observation of Dislocations in Polycrystalline Metal Films. In: The Encyclopedia of Materials: Science and Technology, Vol. 1, pp. 2329 - 2331 (Eds. Buschow, .H.J.; Cahn, R.; Flemings, M.; Ilschner, .; Kramer, E. et al.) (2001)
Microstructure of Ni2B Laser-Induced Surface-Alloyed α-Fe (Materials Resaerch Symposium Proceedings, Phase Transformations and Systems Driven far from Equilibrium, 481). MRS Fall Meeting´97, Boston, MA, USA. (2001)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
Combining concepts of semiconductor physics and corrosion science, we develop a novel approach that allows us to perform ab initio calculations under controlled potentiostat conditions for electrochemical systems. The proposed approach can be straightforwardly applied in standard density functional theory codes.
Electron microscopes offer unique capabilities to probe materials with extremely high spatial resolution. Recent advancements in in situ platforms and electron detectors have opened novel pathways to explore local properties and the dynamic behaviour of materials.
In this project, links are being established between local chemical variation and the mechanical response of laser-processed metallic alloys and advanced materials.
A high degree of configurational entropy is a key underlying assumption of many high entropy alloys (HEAs). However, for the vast majority of HEAs very little is known about the degree of short-range chemical order as well as potential decomposition. Recent studies for some prototypical face-centered cubic (fcc) HEAs such as CrCoNi showed that…
Atom probe tomography (APT) is a material analysis technique capable of 3D compositional mapping with sub-nanometer resolution. The specimens for APT are shaped as sharp needles (~100 nm radius at the apex), so as to reach the necessary intense electrostatic fields, and are typically prepared via focused ion beam (FIB) based milling.
In collaboration with Dr. Edgar Rauch, SIMAP laboratory, Grenoble, and Dr. Wolfgang Ludwig, MATEIS, INSA Lyon, we are developing a correlative scanning precession electron diffraction and atom probe tomography method to access the three-dimensional (3D) crystallographic character and compositional information of nanomaterials with unprecedented…