Roters, F.; Eisenlohr, P.; Diehl, M.; Shanthraj, P.; Kords, C.; Raabe, D.: The general crystal plasticity framework 'DAMASK'. Institutsseminar, Institute of Materials Simulation, Department of Materials Science, University of Erlangen-Nürnberg, Fürth, Germany (2013)
Shanthraj, P.; Diehl, M.; Eisenlohr, P.; Roters, F.: Advanced spectral methods to study mechanics of heterogeneous materials. SPP1420 PhD and PostDoc workshop, Darmstadt, Germany (2013)
Kords, C.; Eisenlohr, P.; Roters, F.: What contributes to the dislocation network stress driving continuum dislocation dynamics? Kolloquium der Forschergruppe 1650, Bad Herrenalb, Germany (2013)
Roters, F.; Diehl, M.; Shanthraj, P.; Eisenlohr, P.; Raabe, D.: A spectral method solution to crystal elasto-viscoplasticity at finite strains. "Textures, Microstructures and Plastic Anisotropy, a Tribute to Paul Van Houtte", KU Leuven, Belgium (2013)
Roters, F.; Diehl, M.; Shanthraj, P.; Lebensohn, R. A.; Eisenlohr, P.: A spectral method solution to crystal elastoviscoplasticity at finite strains. Plasticity ’13, The 19th International Symposium on Plasticity & Its Current Applications, Nassau, Bahamas (2013)
Liu, B.; Raabe, D.; Roters, F.: Discrete Dislocation Dynamics Simulation of High Temperature Creep in Nickel-based Single Crystal Superalloys. MMM2012, 6th International Conference on Multiscale Materials Modeling, Singapore City, Singapore (2012)
Liu, B.; Raabe, D.; Roters, F.: A dislocation dynamics study of dislocation cell formation and interaction between a low angle grain boundary and in-coming dislocations. 1st PRACE (Partnership for Advanced computing in Europe) Scientific Conference, Hamburg, Germany (2012)
Roters, F.; Eisenlohr, P.; Diehl, M.; Kords, C.; Raabe, D.: The general crystal plasticity framework DAMASK. Colloquium Materials Modelling / Werkstoffkunde und Festigkeitslehre at Institut für Materialprüfung, Stuttgart, Germany (2012)
Kords, C.; Eisenlohr, P.; Roters, F.: A nonlocal crystal plasticity model used to solve heterogeneous boundary value problems for 3D microstructures. 18th International Symposium on Plasticity & Its Current Applications, San Juan, Puerto Rico (2012)
Liu, B.; Raabe, D.; Eisenlohr, P.; Roters, F.: Dislocation-hexagonal dislocation network interaction in BCC metals. 18th International Symposium on Plasticity & Its Current Applications, San Juan, Puerto Rico (2012)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
This project will aim at developing MEMS based nanoforce sensors with capacitive sensing capabilities. The nanoforce sensors will be further incorporated with in situ SEM and TEM small scale testing systems, for allowing simultaneous visualization of the deformation process during mechanical tests
The utilization of Kelvin Probe (KP) techniques for spatially resolved high sensitivity measurement of hydrogen has been a major break-through for our work on hydrogen in materials. A relatively straight forward approach was hydrogen mapping for supporting research on hydrogen embrittlement that was successfully applied on different materials, and…
It is very challenging to simulate electron-transfer reactions under potential control within high-level electronic structure theory, e. g. to study electrochemical and electrocatalytic reaction mechanisms. We develop a novel method to sample the canonical NVTΦ or NpTΦ ensemble at constant electrode potential in ab initio molecular dynamics…
Photovoltaic materials have seen rapid development in the past decades, propelling the global transition towards a sustainable and CO2-free economy. Storing the day-time energy for night-time usage has become a major challenge to integrate sizeable solar farms into the electrical grid. Developing technologies to convert solar energy directly into…
Statistical significance in materials science is a challenge that has been trying to overcome by miniaturization. However, this process is still limited to 4-5 tests per parameter variance, i.e. Size, orientation, grain size, composition, etc. as the process of fabricating pillars and testing has to be done one by one. With this project, we aim to…