Ram, F.; Zaefferer, S.; Jäpel, T.; Raabe, D.: Error analysis of the crystal orientations and disorientations obtained by the classical electron backscatter diffraction technique. Journal of Applied Crystallography 48 (3), pp. 797 - 813 (2015)
Ram, F.; Zaefferer, S.; Raabe, D.: Kikuchi bandlet method for the accurate deconvolution and localization of Kikuchi bands in Kikuchi diffraction patterns. Journal of Applied Crystallography 47, pp. 264 - 275 (2014)
Ram, F.; Zaefferer, S.: Kikuchi bandlet method: A method for accurate Kikuchi band intensity analysis in EBSD patterns. In: emc2012 proceedings (CD-ROM). EMC 2012 - The 15th European Microscopy Congress, Manchester, UK, September 16, 2012 - September 21, 2012. (2012)
Zaefferer, S.; Schemmann, L.; Stechmann, G.; Ram, F.; Archie, F. M. F.: Using orientation microscopy to explore the correlation of materials properties and microstructures. 25th International conference on materials and technology, Portorož, Slovenia (2017)
Li, Z.; Ram, F.; Zaefferer, S.; Raabe, D.; Reed, R. C.: Investigations of dislocation structures in a Ni-based single crystal superalloy using Electron Channeling Contrast Imaging (ECCI) and cross-correlation EBSD. RMS EBSD, Glasgow, Scotland, UK (2015)
Ram, F.: Have we resorted to red herrings to justify our hasty generalizations in materials science? PhD Science Slam, VISIONS IN SCIENCE, Berlin, Germany (2014)
Ram, F.; Khorashadizadeh, A.; Zaefferer, S.: Kikuchi Band Sharpness: A Measure for the Density of the Crystal Lattice Defects. MSE 2014, Darmstadt, Germany (2014)
Ram, F.; Zaefferer, S.: Accurate Kikuchi band localization and its application for diffraction geometry determination. HR-EBSD workshop, Imperial College, London, UK (2014)
Ram, F.; Zaefferer, S.: Plastic strain derivation and Kikuchi band localization by applying the Kikuchi bandlet method to electron backscatter Kikuchi Diffraction patterns. 17th ICOTOM, Dresden; Germany (2014)
Ram, F.: EBSD projection centre’s importance and available methods for resolving it! Seminar Talk at Arbeitskreis EBSD in Garbsen, Garbsen, Germany (2012)
Ram, F.; Zaefferer, S.: Kikuchi Bandlet Method: A Method to Resolve the Source Point Position of an EBSD Pattern. 20th Annual meeting of the German Crystallographic Society, München, Germany (2012)
Ram, F.; Zaefferer, S.: Error Analysis of the Crystal Orientations and Misorientations obtained by the Classical Electron Backscatter Diffraction Method. IMC 2014, Prague, Czech Republic (2014)
Ram, F.; Zaefferer, S.: Error Analysis of the Crystal Orientations and Misorientations obtained by the Classical Electron Backscatter Diffraction Method. MSE 2014, Darmstadt, Germny (2014)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
This project will aim at developing MEMS based nanoforce sensors with capacitive sensing capabilities. The nanoforce sensors will be further incorporated with in situ SEM and TEM small scale testing systems, for allowing simultaneous visualization of the deformation process during mechanical tests
The utilization of Kelvin Probe (KP) techniques for spatially resolved high sensitivity measurement of hydrogen has been a major break-through for our work on hydrogen in materials. A relatively straight forward approach was hydrogen mapping for supporting research on hydrogen embrittlement that was successfully applied on different materials, and…
It is very challenging to simulate electron-transfer reactions under potential control within high-level electronic structure theory, e. g. to study electrochemical and electrocatalytic reaction mechanisms. We develop a novel method to sample the canonical NVTΦ or NpTΦ ensemble at constant electrode potential in ab initio molecular dynamics…
Photovoltaic materials have seen rapid development in the past decades, propelling the global transition towards a sustainable and CO2-free economy. Storing the day-time energy for night-time usage has become a major challenge to integrate sizeable solar farms into the electrical grid. Developing technologies to convert solar energy directly into…
Crystal Plasticity (CP) modeling [1] is a powerful and well established computational materials science tool to investigate mechanical structure–property relations in crystalline materials. It has been successfully applied to study diverse micromechanical phenomena ranging from strain hardening in single crystals to texture evolution in…