Strondl, A.; Palm, M.; Gnauk, J.; Frommeyer, G.: Microstructure and mechanical properties of nickel based superalloy IN718 produced by rapid prototyping with electron beam melting (EBM). Materials Science and Technology 27 (5), pp. 876 - 883 (2011)
Jiménez, J.A.; Frommeyer, G.: Analysis of the microstructure evoluting during tensile testing at room temperature of high-manganese austenitic stee. Materials Characterization 61 (21), pp. 221 - 226 (2010)
Pozuelo, M.; Wittig, J.A.; Jiménez, J.A.; Frommeyer, G.: Enhanced Mechanical Properties of a Novel High-Nitrogen Cr–Mn–Ni–Si Austenitic Stainless Steel via TWIP/TRIP Effects. Metallurgical and Materials Transactions A 40 (8), pp. 1826 - 1834 (2009)
Jiménez, J.A.; Carsi, M.; Ruano, O.A.; Frommeyer, G.: Effect of testing temperature and strain rate on the transformation behaviour of retained austenite in low-alloyed multiphase steel. Materials Science and Engineering A 508, pp. 195 - 199 (2009)
Frommeyer, G.; Rablbauer, R.: High temperature materials based on the intermetallic compound NiAl reinforced by refractory metals for advanced energy conversion technologies. Steel Research International 79, pp. 507 - 513 (2008)
Strondl, A.; Fischer, R.; Frommeyer, G.; Schneider, A.: Investigations of MX and γ'/γ'' precipitates in the nickel-based superalloy 718 produced by electron beam melting. Materials Science and Engineering A 480, pp. 138 - 147 (2008)
Wittig, J.E.; Frommeyer, G.: Deformation and fracture behavior of rapidly solidified and annealed iron-silicon alloys. Metallurgical and Materials Transaction A 39A, pp. 252 - 264 (2008)
Deges, J.; Rablbauer, R.; Frommeyer, G.; Schneider, A.: Observation of boron enrichments in a heat treated quasibinary hypoeutectic NiAl-HfB2 alloy by means of atom probe field-ion microscopy (APFIM). Surface and Interface Analysis 39, pp. 251 - 156 (2007)
Frommeyer, G.: Die Singularitäten des Eisens bestimmen die universellen Eigenschaften der Stähle. Teil 1: Bildung-Struktur-Magnetismus-Transformation des Eisens. Stahl und Eisen 127 (10), pp. 53 - 64 (2007)
Frommeyer, G.: Die Singularitäten des Eisens bestimmen die universellen Eigenschaften der Stähle. Teil 2: Plastizität, Verfestigungsmechanismen und Mischkristallhärtung des krz Eisens. Stahl und Eisen 127 (11), pp. 97 - 110 (2007)
Frommeyer, G.: Die Singularitäten des Eisens bestimmen die universellen Eigenschaften der Stähle. Teil 3: Stahl-Innovationen. Stahl und Eisen 127 (12), pp. 67 - 82 (2007)
Frommeyer, G.; Kowalski, W.; Rablbauer, R.: Structural superplasticity in a fine-grained eutectic intermetallic NiAl-Cr alloy. Metallurgical and Materials Transactions A 37A, pp. 3511 - 3517 (2007)
Jimenez, J.A.; Frommeyer, G.; Lopez, M.; Candela, N.; Ruano, O.A.: Mechanical properties of composite materials consisting of M3/2 high speed steel reinforced with niobium carbides. Materials Science Forum 539-543, pp. 756 - 761 (2007)
Frommeyer, G.; Brüx, U.: Microstructures and Mechanical Properties of High-Strength Fe–Mn–Al–C Light-Weight TRIPLEX Steels. Steel Research International 77 (9-10), pp. 627 - 633 (2006)
Frommeyer, G.; Gnauk, J.; Frech, W.; Zeller, S.: Shape flow casting and in-rotating-liquid-spinning processes for the continuous production of wires and of high-strength and soft magnetic metallic fibres. ISIJ International 46 (12), pp. 1858 - 1868 (2006)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
Many important phenomena occurring in polycrystalline materials under large plastic strain, like microstructure, deformation localization and in-grain texture evolution can be predicted by high-resolution modeling of crystals. Unfortunately, the simulation mesh gets distorted during the deformation because of the heterogeneity of the plastic…
Here, we aim to develop machine-learning enhanced atom probe tomography approaches to reveal chemical short/long-range order (S/LRO) in a series of metallic materials.
While Density Functional Theory (DFT) is in principle exact, the exchange functional remains unknown, which limits the accuracy of DFT simulation. Still, in addition to the accuracy of the exchange functional, the quality of material properties calculated with DFT is also restricted by the choice of finite bases sets.
The Atom Probe Tomography group in the Microstructure Physics and Alloy Design department is developing integrated protocols for ultra-high vacuum cryogenic specimen transfer between platforms without exposure to atmospheric contamination.
The structures of grain boundaries (GBs) have been investigated in great detail. However, much less is known about their chemical features, owing to the experimental difficulties to probe these features at the near-atomic scale inside bulk material specimens. Atom probe tomography (APT) is a tool capable of accomplishing this task, with an ability…
Hydrogen embrittlement is one of the most substantial issues as we strive for a greener future by transitioning to a hydrogen-based economy. The mechanisms behind material degradation caused by hydrogen embrittlement are poorly understood owing to the elusive nature of hydrogen. Therefore, in the project "In situ Hydrogen Platform for…