Scheu, C.; Zhang, S.: Hematite for light induced water splitting – improving efficiency by tuning distribution of Sn dopants at the atomic scale. Karlsruher Werkstoffkolloquium_Digital (2021)
Scheu, C.; Hengge, K. A.: Insights in the stability of Pt/Ru catalyst and the effect for polymer electrolyte membrane fuel cells. Thermec 2021, Online Conference (2021)
Aymerich Armengol, R.; Lim, J.; Ledendecker, M.; Scheu, C.: The devil is in the details: correlating SMSI catalyst encapsulation layers with electrochemical properties. ElecNano9 2020, online, Paris, France (2020)
Scheu, C.: Atomic-scale characterization of complex solid solution nanoparticles using TEM. Workshop on High Entropy Alloy and Complex Solid Solution Nanoparticles for Electrocatalysis, RUB, online, Bochum, Germany (2020)
Scheu, C.: Co-organizer of the International Seminar Series on the Microstructure of Materials (on-line). International Seminar Series on the Microstructure of Materials, online (2020)
Scheu, C.; Hieke, S. W.: How stable are thin Aluminium films: Dewetting phenomena observed by in-situ electron microscopy. Microscopy Conference 2019 (MC2019), Berlin, Germany (2019)
Scheu, C.; Hieke, S. W.: Fundamentals and Applications of Electron Energy-Loss Spectroscopy in a Scanning Transmission Electron Microscope. Universita' Roma Tre Colloquium, Roma, Italy (2019)
Scheu, C.: Materials for renewable energy applications. Metallurgical Engineering and Materials Science Department Colloquium, Indian Institute of Technology, Mumbai, India (2019)
Frank, A.; Changizi, R.; Scheu, C.: Preparative and analytical challenges in electron microscopic investigation of nanostructured CuInS2 thin films for energy applications. Microscience Microscopy Congress (MMC) 2019, Manchester, UK (2019)
Gänsler, T.; Frank, A.; Betzler, S. B.; Scheu, C.: Electron microscopy studies of Nb3O7(OH) nanostructured cubes - insights in the growth mechanism. Microscience Microscopy Congress MMC2019, Manchester, UK (2019)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
In collaboration with Dr. Edgar Rauch, SIMAP laboratory, Grenoble, and Dr. Wolfgang Ludwig, MATEIS, INSA Lyon, we are developing a correlative scanning precession electron diffraction and atom probe tomography method to access the three-dimensional (3D) crystallographic character and compositional information of nanomaterials with unprecedented…
A high degree of configurational entropy is a key underlying assumption of many high entropy alloys (HEAs). However, for the vast majority of HEAs very little is known about the degree of short-range chemical order as well as potential decomposition. Recent studies for some prototypical face-centered cubic (fcc) HEAs such as CrCoNi showed that…
Atom probe tomography (APT) is a material analysis technique capable of 3D compositional mapping with sub-nanometer resolution. The specimens for APT are shaped as sharp needles (~100 nm radius at the apex), so as to reach the necessary intense electrostatic fields, and are typically prepared via focused ion beam (FIB) based milling.
About 90% of all mechanical service failures are caused by fatigue. Avoiding fatigue failure requires addressing the wide knowledge gap regarding the micromechanical processes governing damage under cyclic loading, which may be fundamentally different from that under static loading. This is particularly true for deformation-induced martensitic…
We simulate the ionization contrast in field ion microscopy arising from the electronic structure of the imaged surface. For this DFT calculations of the electrified surface are combined with the Tersoff-Hamann approximation to electron tunneling. The approach allows to explain the chemical contrast observed for NiRe alloys.
Electron channelling contrast imaging (ECCI) is a powerful technique for observation of extended crystal lattice defects (e.g. dislocations, stacking faults) with almost transmission electron microscopy (TEM) like appearance but on bulk samples in the scanning electron microscope (SEM).