Rezaei, S.; Mianroodi, J. R.; Khaledi, K.; Reese, S.: A nonlocal method for modeling interfaces: Numerical simulation of decohesion and sliding at grain boundaries. Computer Methods in Applied Mechanics and Engineering 362, 112836 (2020)
Fernández, M.; Rezaei, S.; Mianroodi, J. R.; Fritzen, F.; Reese, S.: Application of artificial neural networks for the prediction of interface mechanics: a study on grain boundary constitutive behavior. Advanced Modeling and Simulation in Engineering Sciences 7, 1 (2020)
Rezaei, S.; Jaworek, D.; Mianroodi, J. R.; Wulfinghoff, S.; Reese, S.: Atomistically motivated interface model to account for coupled plasticity and damage at grain boundaries. Journal of the Mechanics and Physics of Solids 124, pp. 325 - 349 (2019)
Mianroodi, J. R.; Hunter, A. G. M.; Beyerlein, I. J.; Svendsen, B.: Theoretical and computational comparison of models for dislocation dissociation and stacking fault/core formation in fcc crystals. Journal of the Mechanics and Physics of Solids 95, pp. 719 - 741 (2016)
Kochmann, J.; Wulfinghoff, S.; Reese, S.; Mianroodi, J. R.; Svendsen, B.: Two-scale FE–FFT- and phase-field-based computational modeling of bulk microstructural evolution and macroscopic material behavior. Computer Methods in Applied Mechanics and Engineering 305, pp. 89 - 110 (2016)
Mianroodi, J. R.; Peerlings, R.; Svendsen, B.: Strongly non-local modelling of dislocation transport and pile-up. Philosopical Magazine A 96 (12), pp. 1171 - 1187 (2016)
Mianroodi, J. R.; Svendsen, B.: Atomistically determined phase-field modeling of dislocation dissociation, stacking fault formation, dislocation slip, and reactions in fcc systems. Journal of the Mechanics and Physics of Solids 77, pp. 109 - 122 (2015)
Mianroodi, J. R.; Svendsen, B.: Modeling Dislocation-Stacking Fault Interaction Using Molecular Dynamics. Proceedings of Applied Mathematics and Mechanics 13 (1), pp. 11 - 14 (2013)
Rezaei, S.; Mianroodi, J. R.; Brepols, T.; Wulfinghoff, S.; Reese, S.: An interface model to account for damage and plasticity at grain boundaries. Proceedings of Applied Mathematics and Mechanics, Special Issue: 90th Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM) 19 (1), e201900214, (2019)
Mianroodi, J. R.; Peerlings, R.; Svendsen, B.: Strongly versus weakly non-local dislocation transport and pile-up. In: Contributions to the Foundations of Multidisciplinary Research in Mechanics, pp. 2464 - 2465 (Ed. Floryan, E. J.M.). 24th International Congress of Theoretical and Applied Mechanics (ICTAM 2016) - XXIV ICTAM, Montreal, Canada, August 21, 2016 - August 26, 2016. IUTAM (2017)
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
This project aims to investigate the influence of grain boundaries on mechanical behavior at ultra-high strain rates and low temperatures. For this micropillar compressions on copper bi-crystals containing different grain boundaries will be performed.
Oxidation and corrosion of noble metals is a fundamental problem of crucial importance in the advancement of the long-term renewable energy concept strategy. In our group we use state-of-the-art electrochemical scanning flow cell (SFC) coupled with inductively coupled plasma mass spectrometer (ICP-MS) setup to address the problem.
For understanding the underlying hydrogen embrittlement mechanism in transformation-induced plasticity steels, the process of damage evolution in a model austenite/martensite dual-phase microstructure following hydrogenation was investigated through multi-scale electron channelling contrast imaging and in situ optical microscopy.
We plan to investigate the rate-dependent tensile properties of 2D materials such as metal thin films and PbMoO4 (PMO) films by using a combination of a novel plan-view FIB based sample lift out method and a MEMS based in situ tensile testing platform inside a TEM.
Hydrogen induced embrittlement of metals is one of the long standing unresolved problems in Materials Science. A hierarchical multiscale approach is used to investigate the underlying atomistic mechanisms.
Hydrogen embrittlement affects high-strength ferrite/martensite dual-phase (DP) steels. The associated micromechanisms which lead to failure have not been fully clarified yet. Here we present a quantitative micromechanical analysis of the microstructural damage phenomena in a model DP steel in the presence of hydrogen.
We will investigate the electrothermomechanical response of individual metallic nanowires as a function of microstructural interfaces from the growth processes. This will be accomplished using in situ SEM 4-point probe-based electrical resistivity measurements and 2-point probe-based impedance measurements, as a function of mechanical strain and…
The project aims to study corrosion, a detrimental process with an enormous impact on global economy, by combining denstiy-functional theory calculations with thermodynamic concepts.