Hengge, K. A.; Scheu, C.: Novel electrodes for polymer based fuel cells. The 18th Israel Materials Engineering Conference (IMEC18), Dead Sea, Israel (2018)
Scheu, C.: 3D Nb3O7(OH) Nanoarrays – Structure, Stability and Functional Properties. Talk at Felix-Bloch-Institut für Festkörperphysik, Universität Leipzig, Leipzig, Germany (2018)
Hieke, S. W.; Willinger, M. G.; Wang, Z.-J.; Richter, G.; Dehm, G.; Scheu, C.: Evolution of faceted voids and fingering instabilities in a model thin film system - Insights by in-situ environmental scanning electron microscopy. Symposium - In situ Microscopy with Electrons, X‐rays and Scanning Probes, Universität Erlangen‐Nürnberg, Erlangen, Germany (2017)
Scheu, C.: Thermal stability and phase transformation of nanostructured Nb3O7(OH) photocatalyst. Material Science & Technology (MST), Salt Lake City, UT, USA (2017)
Zhang, S.; Diehl, L.; Lotsch, B. V.; Scheu, C.: In-situ heating study on the growth of NiOx nanoparticles on photocatalytic supports. International GRK 1896 Satellite Symposium “In Situ Microscopy with Electrons, X-rays and Scanning Probes, Erlangen, Germany (2017)
Betzler, S. B.; Scheu, C.: Nb3O7(OH) – a promising candidate for photocatalyst: synthesis, nanostructure and functionality. International Conference on Functional Nanomaterials and Nanodevices, Budapest, Hungary (2017)
Garzón-Manjón, A.; Zahn, G.; Kuchshaus, C.; Ludwig, A.; Scheu, C.: Observation of the Structural Transformation of Multinary Nanoparticles by In-situ Transmission Electron Microscopy. 13th Multinational Congress on Microscopy (MCM2017), Rovinj, Croatia (2017)
Scheu, C.: Structural and functional properties of Nb3O7(OH) nanoarrays and their modification via doping and thermal annealing. Talk at Institut für Werkstofftechnik, Technische Universität Ilmenau, Ilmenau, Gemany (2017)
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
Hydrogen embrittlement affects high-strength ferrite/martensite dual-phase (DP) steels. The associated micromechanisms which lead to failure have not been fully clarified yet. Here we present a quantitative micromechanical analysis of the microstructural damage phenomena in a model DP steel in the presence of hydrogen.
We will investigate the electrothermomechanical response of individual metallic nanowires as a function of microstructural interfaces from the growth processes. This will be accomplished using in situ SEM 4-point probe-based electrical resistivity measurements and 2-point probe-based impedance measurements, as a function of mechanical strain and…
Hydrogen induced embrittlement of metals is one of the long standing unresolved problems in Materials Science. A hierarchical multiscale approach is used to investigate the underlying atomistic mechanisms.
Understanding hydrogen-assisted embrittlement of advanced structural materials is essential for enabling future hydrogen-based energy industries. A crucially important phenomenon in this context is the delayed fracture in high-strength structural materials. Factors affecting the hydrogen embrittlement are the hydrogen content,...
This project will aim at developing MEMS based nanoforce sensors with capacitive sensing capabilities. The nanoforce sensors will be further incorporated with in situ SEM and TEM small scale testing systems, for allowing simultaneous visualization of the deformation process during mechanical tests
The project aims to study corrosion, a detrimental process with an enormous impact on global economy, by combining denstiy-functional theory calculations with thermodynamic concepts.
Thermo-chemo-mechanical interactions due to thermally activated and/or mechanically induced processes govern the constitutive behaviour of metallic alloys during production and in service. Understanding these mechanisms and their influence on the material behaviour is of very high relevance for designing new alloys and corresponding…
Nickel-based alloys are a particularly interesting class of materials due to their specific properties such as high-temperature strength, low-temperature ductility and toughness, oxidation resistance, hot-corrosion resistance, and weldability, becoming potential candidates for high-performance components that require corrosion resistance and good…