Gutiérrez-Urrutia, I.; Archie, F. M. F.; Raabe, D.; Yan, F.; Tao, N.-R.; Lu, K.: Plastic accommodation at homophase interfaces between nanotwinned and recrystallized grains in an austenitic duplex-microstructured steel. Science and Technology of Advanced Materials 17 (1), pp. 29 - 36 (2016)
Gutiérrez-Urrutia, I.; Raabe, D.: High strength and ductile low density austenitic FeMnAlC steels: Simplex and alloys strengthened by nanoscale ordered carbides. Materials Science and Technology 30 (9), pp. 1099 - 1104 (2014)
Gutiérrez-Urrutia, I.; Böttcher, A.; Lahn, L.; Raabe, D.: Microstructure-magnetic property relations in grain-oriented electrical steels: quantitative analysis of the sharpness of the Goss orientation. Journal of Materials Science 49 (1), pp. 269 - 276 (2014)
Marceau, R. K. W.; Gutiérrez-Urrutia, I.; Herbig, M.; Moore, K. L.; Lozano-Perez, S.; Raabe, D.: Multi-Scale Correlative Microscopy Investigation of both Structure and Chemistry of Deformation Twin Bundles in Fe–Mn–C TWIP Steel. Microscopy & Microanalysis 19 (6), pp. 1581 - 1585 (2013)
Biswas, S.; Sket, F.; Chiumenti, M.; Gutiérrez-Urrutia, I.; Molina-Aldareguía, J. M.; Pérez-Prado, M. T.: Relationship Between the 3D Porosity and β-Phase Distributions and the Mechanical Properties of a High Pressure Die Cast AZ91 Mg Alloy. Metallurgical and Materials Transactions A 44 (9), pp. 4391 - 4403 (2013)
Gutiérrez-Urrutia, I.; Zaefferer, S.; Raabe, D.: Coupling of Electron Channeling with EBSD: Toward the Quantitative Characterization of Deformation Structures in the SEM. JOM: the Journal of the Minerals, Metals & Materials Society (TMS) 65 (9), pp. 1229 - 1236 (2013)
Srinivasarao, B.; Zhilyaev, A.P.; Gutiérrez-Urrutia, I.; Pérez-Prado, M. T.: Stabilization of metastable phases in Mg–Li alloys by high-pressure torsion. Scripta Materialia 68, pp. 583 - 586 (2013)
Boehlert, C.; Chen, Z.; Gutiérrez-Urrutia, I.; Llorca, J.; Pérez-Prado, M. T.: On the controversy about the presence of grain boundary sliding in Mg AZ31. Materials Science Forum 735, pp. 22 - 25 (2013)
Fernández, A.; Jérusalem, A.; Gutiérrez-Urrutia, I.; Pérez-Prado, M. T.: 3D investigation of the grain boundary-twin interactions in a Mg AZ31 alloy by 3D EBSD and continuum modeling. Acta Materialia 61, pp. 7679 - 7692 (2013)
Gutiérrez-Urrutia, I.; Raabe, D.: Influence of Al content and precipitation state on the mechanical behavior of austenitic high-Mn low-density steels. Scripta Materialia 68 (6), pp. 343 - 347 (2013)
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…
Biological materials in nature have a lot to teach us when in comes to creating tough bio-inspired designs. This project aims to explore the unknown impact mitigation mechanisms of the muskox head (ovibus moschatus) at several length scales and use this gained knowledge to develop a novel mesoscale (10 µm to 1000 µm) metamaterial that can mimic the…
Microbiologically influenced corrosion (MIC) of iron by marine sulfate reducing bacteria (SRB) is studied electrochemically and surfaces of corroded samples have been investigated in a long-term project.
In this project we investigate the hydrogen distribution and desorption behavior in an electrochemically hydrogen-charged binary Ni-Nb model alloy. The aim is to study the role of the delta phase in hydrogen embrittlement of the Ni-base alloy 718.
We plan to investigate the rate-dependent tensile properties of 2D materials such as metal thin films and PbMoO4 (PMO) films by using a combination of a novel plan-view FIB based sample lift out method and a MEMS based in situ tensile testing platform inside a TEM.
This project aims to investigate the influence of grain boundaries on mechanical behavior at ultra-high strain rates and low temperatures. For this micropillar compressions on copper bi-crystals containing different grain boundaries will be performed.
Oxidation and corrosion of noble metals is a fundamental problem of crucial importance in the advancement of the long-term renewable energy concept strategy. In our group we use state-of-the-art electrochemical scanning flow cell (SFC) coupled with inductively coupled plasma mass spectrometer (ICP-MS) setup to address the problem.
For understanding the underlying hydrogen embrittlement mechanism in transformation-induced plasticity steels, the process of damage evolution in a model austenite/martensite dual-phase microstructure following hydrogenation was investigated through multi-scale electron channelling contrast imaging and in situ optical microscopy.