Jägle, E. A.: Atom Probe Tomography: Basics, data analysis and application to the analysis of phase transformations. Department of Materials Engineering house seminar, KU Leuven, Leuven, Belgium (2014)
Jägle, E.: Parameter finding for and accuracy of the Maximum Separation algorithm assessed by Atom Probe simulations. 2nd European APT Workshop at ETH Zürich, Zürich, Switzerland (2013)
Jägle, E.: Atom Probe Tomography: Basics, data analysis and application to the analysis of advanced steels. Symposium "Frontiers in Steelmaking and Steel Design", INM, Saarbrücken, Germany (2013)
Jägle, E.: Atom Probe Tomography: Basics, data analysis and application to the analysis of phase transformations. Kolloquium at Max-Planck-Institute for Intelligent Systems, Stuttgart, Germany (2013)
Hariharan, A.; Lu, L.; Risse, J.; Jägle, E. A.; Raabe, D.: Mechanisms Contributing to Solidification Cracking during laser powder bed fusion of Inconel-738LC. Alloys for Additive Manufacturing Symposium 2019 (AAMS2019), Chalmers University of Technology, Gothenburg, Sweden (2019)
Bajaj, P.; Gupta, A.; Jägle, E. A.; Raabe, D.: Precipitation kinetics during non-linear heat treatment in Laser Additive Manufacturing. International Conference on Advanced Materials and Processes, ‘ADMAT 2017’ SkyMat, Thiruvananthapuram, India (2017)
Jägle, E. A.: Microstructural Aspects of Additive Manufacturing. Lecture: Workshop “Microstructural Aspects of Additive Manufacturing”, Indian Institute of Technology Roorkee, 3,5h of lectures, Roorkee, India, December 02, 2017
Ackers, M.: Recommissioning of a metal powder atomisation system and investigation of its suitability to produce powders for additive Manufacturing processes. Master, Ruhr-Universität Bochum, Bochum, Germany (2017)
Qin, Y.: Effect of post-heat treatment on the microstructure and mechanical properties of SLM-produced IN738LC. Master, RWTH Aachen, Aachen, Germany (2017)
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
The project HyWay aims to promote the design of advanced materials that maintain outstanding mechanical properties while mitigating the impact of hydrogen by developing flexible, efficient tools for multiscale material modelling and characterization. These efficient material assessment suites integrate data-driven approaches, advanced…
Hydrogen at crack tips can embrittle steels and lead to catastrophic material failure. In this project we develop a continuum model for the formation of hydride zones in the tensile regions of a crack tip. It changes the fracture properties of static and propagating fractures.
In this project, we directly image and characterize solute hydrogen and hydride by use of atom probe tomography combined with electron microscopy, with the aim to investigate H interaction with different phases and lattice defects (such as grain boundaries, dislocation, etc.) in a set of specimens of commercially pure Ti, model and commercial…
The goal of this project is to develop an environmental chamber for mechanical testing setups, which will enable mechanical metrology of different microarchitectures such as micropillars and microlattices, as a function of temperature, humidity and gaseous environment.
In this project, the effects of scratch-induced deformation on the hydrogen embrittlement susceptibility in pearlite is investigated by in-situ nanoscratch test during hydrogen charging, and atomic scale characterization. This project aims at revealing the interaction mechanism between hydrogen and scratch-induced deformation in pearlite.
Hydrogen embrittlement is a persistent mode of failure in modern structural materials. The processes related to HE span various time and spatial scales. Thus we are establishing multiscale approaches that are based on the parameters and insights obtained by accurate ab initio calculations in order to simulate HE at the continuum level.
In this project, the electrochemical and corrosion behavior of high entropy alloys (HEAs) have been investigated by combining a micro-electrochemical scanning flow cell (SFC) and an inductively coupled plasma mass spectroscopy (ICP-MS) element analysis.
Within this project, we will use a green laser beam source based selective melting to fabricate full dense copper architectures. The focus will be on identifying the process parameter-microstructure-mechanical property relationships in 3-dimensional copper lattice architectures, under both quasi-static and dynamic loading conditions.