Möbus, G.; Schumann, E.; Dehm, G.; Rühle, M.: Measurement of Coherency States of Metal-Ceramic Interfaces by HRTEM Image Processing. Physica Status Solidi A 150 (1), pp. 77 - 87 (1995)
Dehm, G.; Rühle, M.; Ding, G.; Raj, R.: Growth and Structure of Copper Thin Films Deposited on (0001) Sapphire by Molecular Beam Epitaxy. Philosophical Magazine B-Physics of Condensed Matter Statistical Mechanics Electronic Optical and Magnetic Properties 71 (6), pp. 1111 - 1124 (1995)
Kirchlechner, C.; Kečkéš, J.; Micha, J.-S.; Dehm, G.: In Situ μLaue: Instrumental Setup for the Deformation of Micron Sized Samples. In: Neutrons and Synchrotron Radiation in Engineering Materials Science: From Fundamentals to Applications: Second Edition, pp. 425 - 438 (Eds. Staron, P.; Schreyer, A.; Clemens, H.; Mayer, S.). wiley, Hoboken, NJ, USA (2017)
Dehm, G.; Legros, M.; Kiener, D.: In-situ TEM Straining Experiments: Recent Progress in Stages and Small-Scale Mechanics. In: In-situ Electron Microscopy: SEM and TEM Applications in Physics, Chemistry and Materials Science, pp. 227 - 254 (Ed. Dehm, G.). Wiley VCH Verlag, Weinheim, Germany (2012)
Dehm, G.: Das Erich-Schmid-Institut für Materialwissenschaft (ESI) der Österreichischen Akademie der Wissenschaften. In: Handbuch der Nanoanalytik Steiermark, NanoNet Styria, 1 Ed., pp. 1 - 311 (Ed. Rom , W.). W. Rom, Graz, Austria (2005)
Dehm, G.; Müllner, P.: TEM-Observation of Dislocations in Polycrystalline Metal Films. In: The Encyclopedia of Materials: Science and Technology, Vol. 1, pp. 2329 - 2331 (Eds. Buschow, .H.J.; Cahn, R.; Flemings, M.; Ilschner, .; Kramer, E. et al.) (2001)
Microstructure of Ni2B Laser-Induced Surface-Alloyed α-Fe (Materials Resaerch Symposium Proceedings, Phase Transformations and Systems Driven far from Equilibrium, 481). MRS Fall Meeting´97, Boston, MA, USA. (2001)
Bieler, S.; Kang, S. G.; Heußen, D.; Ramachandramoorthy, R.; Dehm, G.; Weinberg, K.: Investigation of copper lattice structures using a Split Hopkinson Pressure Bar. Proceedings of Applied Mathematics and Mechanics, Special Issue: 92nd Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM) 21 (1), e202100155, (2021)
Rehman, U.; Tian, C.; Stein, F.; Best, J. P.; Dehm, G.: Fracture Toughness of the Intermetallic C15 Al2Ca Laves Phase Determined using a Micropillar Splitting Technique. In: Intermetallics 2021, pp. 155 - 156. Intermetallics 2021, Kloster Banz, Bad Staffelstein, Germany, October 04, 2021 - October 08, 2021. (2021)
Luo, W.; Kirchlechner, C.; Dehm, G.; Stein, F.: Micromechanics of Co–Nb Laves Phases: Strength, Fracture Toughness, and Hadrness as Function of Composition and Crystal Structure. In: Joint EPRI – 123HIMAT International Conference on Advances in High-Temperature Materials, 2019, pp. 11 - 21 (Eds. Shingledecker, J.; Takeyama, M.). EPRI's 9th International Conf on Advances in Materials Technology for Fossil Power Plants and the 2nd International 123HiMAT Conf on High-Temperature Materials, Nagasaki, Japan, October 21, 2019 - October 24, 2019. (2019)
Luo, W.; Kirchlechner, C.; Dehm, G.; Stein, F.: Deformation of Micropillars of Cubic and Hexagonal NbCo2 Laves Phases under Uniaxial Compression at Room Temperature. In: Proc. Intermetallics 2017, pp. 199 - 200 (Eds. Heilmaier, M.; Krüger, M.; Mayer, S.; Palm, M.; Stein, F.). Intermetallics 2017, Educational Center Kloster Banz, Bad Staffelstein, Germany, October 02, 2017 - October 06, 2017. Conventus Congressmanagement & Marketing GmbH, Jena, Germany (2017)
Hieke, S. W.; Willinger, M. G.; Wang, Z.-J.; Richter, G.; Dehm, G.; Scheu, C.: In situ electron microscopy – insights in solid state dewetting of epitaxial Al thin films on sapphire. In: Microscopy Conference 2017 (MC 2017) - Proceedings (Ed. Laue, M.). Microscopy Conference 2017 (MC 2017), Lausanne, Switzerland, August 21, 2017 - August 25, 2017. Universität Regensburg, Regensburg (2017)
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
Materials degradation due to wear and corrosion is a major issue that can lead to efficiency loss or even failure. As wear may accelerate corrosion and corrosion may accelerate wear, this interaction is of increasing interest in the wind, hydroelectric, oil and gas energy domains and in the bio-medical field.
In this project, the hydrogen embrittlement mechanisms in several types of high-entropy alloys (HEAs) have been investigated through combined techniques, e.g., low strain rate tensile testing under in-situ hydrogen charging, thermal desorption spectroscopy (TDS),...
Within this project, we will use a green laser beam source based selective melting to fabricate full dense copper architectures. The focus will be on identifying the process parameter-microstructure-mechanical property relationships in 3-dimensional copper lattice architectures, under both quasi-static and dynamic loading conditions.
This project aims to develop a micromechanical metrology technique based on thin film deposition and dewetting to rapidly assess the dynamic thermomechanical behavior of multicomponent alloys. This technique can guide the alloy design process faster than the traditional approach of fabrication of small-scale test samples using FIB milling and…
With the support of DFG, in this project the interaction of H with mechanical, chemical and electrochemical properties in ferritic Fe-based alloys is investigated by the means of in-situ nanoindentation, which can characterize the mechanical behavior of independent features within a material upon the simultaneous charge of H.
This project will aim at addressing the specific knowledge gap of experimental data on the mechanical behavior of microscale samples at ultra-short-time scales by the development of testing platforms capable of conducting quantitative micromechanical testing under extreme strain rates upto 10000/s and beyond.
The aim of the current study is to investigate electrochemical corrosion mechanisms by examining the metal-liquid nanointerfaces. To achieve this, corrosive fluids will be strategically trapped within metal structures using novel additive micro fabrication techniques. Subsequently, the nanointerfaces will be analyzed using cryo-atom probe…