Lymperakis, L.; Neugebauer, J.: Exploring the 5D configurational space of grain boundaries in aluminun: An ab-initio based multiscale analysis. MRS Fall Meeting, Boston, MA, USA (2006)
Wahn, M.; Neugebauer, J.: Generalized Wannier Functions: An efficient way to construct ab-initio tight-binding orbitals for group-III nitrides. 6th International Conference on Nitride Semiconductors, Bremen, Germany (2005)
Hickel, T.; Grabowski, B.; Neumann, K.; Neumann, K.-U.; Ziebeck, K. R. A.; Neugebauer, J.: Temperature dependent properties of Ni-rich Ni2MnGa. Materials Research Society fall meeting, Boston, MA, USA (2005)
Ismer, L.; Ireta, J.; Neugebauer, J.: Thermodynamic stability of the secondary structure of proteins: A DFT-GGA based vibrational analysis. IPAM-Workshop: Multiscale Modeling in Soft Matter and Bio-Physics, Los Angeles, CA, USA (2005)
Lymperakis, L.; Neugebauer, J.: Ab-initio based multiscale calculations of low-angle grain boundaries in Aluminium. Materials Research Society fall meeting, Boston, MA, USA (2005)
Neugebauer, J.: Application and Implementation of Electronic Structure Methods. Lecture: Ruhr-Universität Bochum, SS 2015, Bochum, Germany, April 01, 2015 - September 30, 2015
Neugebauer, J.: Application and Implementation of Electronic Structure Methods. Lecture: Ruhr-Universität Bochum, SS 2014, Bochum, Germany, April 01, 2014 - September 30, 2014
Neugebauer, J.: Application and Implementation of Electronic Structure Methods. Lecture: Ruhr-Universität Bochum, SS 2013 , Bochum, Germany, April 01, 2013 - September 30, 2013
Neugebauer, J.; Hickel, T.: Moderne Computersimulations-Methoden in der Festkörperphysik. Lecture: Hands-on-Tutorial, Ruhr-Universität Bochum, Bochum, Germany, September 20, 2010 - September 24, 2010
In this project, we investigate the phase transformation and twinning mechanisms in a typical interstitial high-entropy alloy (iHEA) via in-situ and interrupted in-situ tensile testing ...
Femtosecond laser pulse sequences offer a way to explore the ultrafast dynamics of charge density waves. Designing specific pulse sequences may allow us to guide the system's trajectory through the potential energy surface and achieve precise control over processes at surfaces.
The aim of this project is to develop novel nanostructured Fe-Co-Ti-X (X = Si, Ge, Sn) compositionally complex alloys (CCAs) with adjustable magnetic properties by tailoring microstructure and phase constituents through compositional and process tuning. The key aspect of this work is to build a fundamental understanding of the correlation between…
In this project, we employ a metastability-engineering strategy to design bulk high-entropy alloys (HEAs) with multiple compositionally equivalent high-entropy phases.
Solitonic excitations with topological properties in charge density waves may be used as information carriers in novel types of information processing.
In this project, links are being established between local chemical variation and the mechanical response of laser-processed metallic alloys and advanced materials.
In this project we conduct together with Dr. Sandlöbes at RWTH Aachen and the department of Prof. Neugebauer ab initio calculations for designing new Mg – Li alloys. Ab initio calculations can accurately predict basic structural, mechanical, and functional properties using only the atomic composition as a basis.
Low dimensional electronic systems, featuring charge density waves and collective excitations, are highly interesting from a fundamental point of view. These systems support novel types of interfaces, such as phase boundaries between metals and charge density waves.