Hickel, T.; Neugebauer, J.: First principles determination of phase transitions in magnetic shape memory alloys. Esomat 2009. The 8th European Symposium on Martensitic Transformations, Prague, Czech Republic (2009)
Hickel, T.; Uijttewaal, M.; Neugebauer, J.: First principles determination of phase transitions in magnetic shape memory alloys. Euromat 2009, Glasgow, UK (2009)
Ma, D.; Friák, M.; Raabe, D.; Neugebauer, J.: Investigation of solid solution strengthening by density functional theory. EUROMAT 2009, Glasgow, Scotland, UK (2009)
Udyansky, A.; von Pezold, J.; Friák, M.; Neugebauer, J.: Influence of long-range C–C elastic interactions on the structural stability of dilute Fe–C solid solutions. EUROMAT 2009, Glasgow, UK (2009)
Holec, D.; Friak, M.; Dlouhy, A.; Neugebauer, J.: Ab initio search for the NiTi ground state with shape-memory ability. ESOMAT 2009, Prague, Czech Republic (2009)
Ma, D.; Friák, M.; Raabe, D.; Neugebauer, J.: Investigation of solid solution strengthening by density functional theory. 11-th National Congress on Theoretical and Applied Mechanics, Borovets, Bulgaria (2009)
Friák, M.; Deges, J.; Krein, R.; Stein, F.; Palm, M.; Frommeyer, G.; Neugebauer, J.: Combining Experimental and Computational Methods in the Development of Fe3Al-based Materials. 5th Discussion Meeting on the Development of Innovative Iron Aluminium Alloys (FEAL 2009), Prague, Czech Republic (2009)
Nazarov, R.; Hickel, T.; Neugebauer, J.: Wasserstoff in X-IP Stahl (ab initio): Einfluss von Defekten auf die Energetik und Dynamik von Wasserstoff in Manganstählen. X-IP Workshop, Duisburg, Germany (2009)
Neugebauer, J.: Material- und Werkstoffdesign am Computer: Möglichkeiten, Grenzen und Perspektiven. Kolloquium at Akademie der Wissenschaften, Düsseldorf, Germany (2009)
Udyansky, A.; von Pezold, J.; Friák, M.; Neugebauer, J.: Influence of long-range C-C elastic interactions on the structural stability of dilute Fe-C solid solutions. Invited Talk at ICAMS, Bochum, Germany (2009)
Friak, M.; Counts, W. A.; Raabe, D.; Neugebauer, J.: Using Ab Initio Calculations in Designing BCC Mg–Li Alloys for Ultra Light-Weight Applications. THERMEC'2009: International Conference on PROCESSING & MANUFACTURING OF ADVANCED MATERIALS, Berlin, Germany (2009)
Hickel, T.; Körmann, F.; Dick, A.; Neugebauer, J.: First principles simulation of thermodynamic properties of iron and iron-based alloys. Thermec'2009. International conference on processing & manufacturing of advanced materials, Berlin, Germany (2009)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
This project will aim at developing MEMS based nanoforce sensors with capacitive sensing capabilities. The nanoforce sensors will be further incorporated with in situ SEM and TEM small scale testing systems, for allowing simultaneous visualization of the deformation process during mechanical tests
The utilization of Kelvin Probe (KP) techniques for spatially resolved high sensitivity measurement of hydrogen has been a major break-through for our work on hydrogen in materials. A relatively straight forward approach was hydrogen mapping for supporting research on hydrogen embrittlement that was successfully applied on different materials, and…
It is very challenging to simulate electron-transfer reactions under potential control within high-level electronic structure theory, e. g. to study electrochemical and electrocatalytic reaction mechanisms. We develop a novel method to sample the canonical NVTΦ or NpTΦ ensemble at constant electrode potential in ab initio molecular dynamics…
Photovoltaic materials have seen rapid development in the past decades, propelling the global transition towards a sustainable and CO2-free economy. Storing the day-time energy for night-time usage has become a major challenge to integrate sizeable solar farms into the electrical grid. Developing technologies to convert solar energy directly into…
Crystal Plasticity (CP) modeling [1] is a powerful and well established computational materials science tool to investigate mechanical structure–property relations in crystalline materials. It has been successfully applied to study diverse micromechanical phenomena ranging from strain hardening in single crystals to texture evolution in…