Hieke, S. W.; Willinger, M. G.; Wang, Z.-J.; Richter, G.; Dehm, G.; Scheu, C.: Evolution of faceted voids and fingering instabilities in a model thin film system - Insights by in-situ environmental scanning electron microscopy. Symposium - In situ Microscopy with Electrons, X‐rays and Scanning Probes, Universität Erlangen‐Nürnberg, Erlangen, Germany (2017)
Brinckmann, S.; Kirchlechner, C.; Dehm, G.; Matoy, K.: Using simulations to investigate the apparent fracture toughness of microcantilevers. Nanomechanical Testing in Materials Research and Development VI, Dubrovnik, Croatia (2017)
Arigela, V. G.; Kirchlechner, C.; Dehm, G.: Setup of a microscale high temperature loading rig for micro-fracture mechanics. Euromat 2017, Thessaloniki, Greece (2017)
Dehm, G.: Resolving the mechanical performance of materials in microelectronic components with µm spatial resolution. FIMPART - Frontiers in Materials Processing Applications, Research and Technology, Bordeaux, France (2017)
Duarte, M. J.; Fang, X.; Brinckmann, S.; Dehm, G.: In-situ nanoindentation of hydrogen bcc Fe–Cr charged surfaces: Current status and future perspectives. Frontiters in Material Science & Engineering workshop: Hydrogen Interaction in Metals, Max-Planck Institut für Eisenforschung, Düsseldorf, Germany (2017)
Brinckmann, S.; Fink, C.; Dehm, G.: Severe Microscale Deformation of Pearlite and Cementite. 2017 MRS Spring Meeting & Exhibits, Phoenix, AZ, USA (2017)
Luo, W.; Kirchlechner, C.; Dehm, G.; Stein, F.: Fracture Toughness of Hexagonal and Cubic NbCo2 Laves Phases. Nanobrücken 2017, European Nanomechanical Testing Conference, University of Manchester, Manchester, UK (2017)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
This project will aim at developing MEMS based nanoforce sensors with capacitive sensing capabilities. The nanoforce sensors will be further incorporated with in situ SEM and TEM small scale testing systems, for allowing simultaneous visualization of the deformation process during mechanical tests
The utilization of Kelvin Probe (KP) techniques for spatially resolved high sensitivity measurement of hydrogen has been a major break-through for our work on hydrogen in materials. A relatively straight forward approach was hydrogen mapping for supporting research on hydrogen embrittlement that was successfully applied on different materials, and…
It is very challenging to simulate electron-transfer reactions under potential control within high-level electronic structure theory, e. g. to study electrochemical and electrocatalytic reaction mechanisms. We develop a novel method to sample the canonical NVTΦ or NpTΦ ensemble at constant electrode potential in ab initio molecular dynamics…
Photovoltaic materials have seen rapid development in the past decades, propelling the global transition towards a sustainable and CO2-free economy. Storing the day-time energy for night-time usage has become a major challenge to integrate sizeable solar farms into the electrical grid. Developing technologies to convert solar energy directly into…
Crystal Plasticity (CP) modeling [1] is a powerful and well established computational materials science tool to investigate mechanical structure–property relations in crystalline materials. It has been successfully applied to study diverse micromechanical phenomena ranging from strain hardening in single crystals to texture evolution in…