Dehm, G.: Mechanische Eigenschaften in kleinen Dimensionen. Lecture: Vorlesung (3LP), SS 2015, Ruhr-Universität Bochum, Bochum, Germany, May 18, 2015 - May 22, 2015
Dehm, G.: Mechanische Eigenschaften in kleinen Dimensionen. Lecture: Vorlesung: Mechanische Eigenschaften in kleinen Dimensionen (2SWS), Ruhr-Universität Bochum, Germany, May 06, 2014 - May 14, 2014
Dehm, G.: Mechanische Eigenschaften in kleinen Dimensionen. Lecture: Vorlesung, SS 2013, Ruhr-Universität Bochum, Bochum, Germany, May 06, 2013 - June 24, 2013
Brognara, A.: Design of ZrCu thin film metallic glasses with tailored mechanical properties through control of composition and nanostructure. Dissertation, RUB Bochum, Bochum, Germany (2025)
Hosseinabadi, R.: Dislocation transmission through coherent and incoherent twin boundaries in copper at the micron scale. Dissertation, Ruhr University Bochum (2024)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
Electron microscopes offer unique capabilities to probe materials with extremely high spatial resolution. Recent advancements in in situ platforms and electron detectors have opened novel pathways to explore local properties and the dynamic behaviour of materials.
In this project, links are being established between local chemical variation and the mechanical response of laser-processed metallic alloys and advanced materials.
At finite temperatures lattice vibrations and magnetic fluctuations are coexisting. To study potential coupling effects, a method is required, which considers both, the spin and the lattice degrees of freedom, simultaneously. We develop and implement such a method by combining atomistic spin dynamics with ab initio molecular dynamics.
Atom probe tomography (APT) is a material analysis technique capable of 3D compositional mapping with sub-nanometer resolution. The specimens for APT are shaped as sharp needles (~100 nm radius at the apex), so as to reach the necessary intense electrostatic fields, and are typically prepared via focused ion beam (FIB) based milling.
In collaboration with Dr. Edgar Rauch, SIMAP laboratory, Grenoble, and Dr. Wolfgang Ludwig, MATEIS, INSA Lyon, we are developing a correlative scanning precession electron diffraction and atom probe tomography method to access the three-dimensional (3D) crystallographic character and compositional information of nanomaterials with unprecedented…
Combining concepts of semiconductor physics and corrosion science, we develop a novel approach that allows us to perform ab initio calculations under controlled potentiostat conditions for electrochemical systems. The proposed approach can be straightforwardly applied in standard density functional theory codes.