Eumann, M.; Sauthoff, G.; Palm, M.: Experimental determination of phase equlibria in the Fe–Al–Mo system. 3rd Discussion Meeting on the Development of Innovative Iron Aluminium Alloys, Mettmann, Germany (2006)
Krein, R.; Schneider, A.; Sauthoff, G.; Frommeyer, G.: Structure and properties of Fe3Al-based alloys with strengthening boride precipitates. 3rd Discussion Meeting on the Development of Innovative Iron Aluminium Alloys, Mettmann, Germany (2006)
Schneider, A.; Stallybrass, C.; Sauthoff, G.; Cerezo, A.; Smith, G. D. W.: Three-dimensional atom probe studies of phase transformations in Fe–Al–Ni–Cr alloys with B2-ordered NiAl precipitates. 49th International Field Emission Symposium (IFES 04), Graz, Austria (2004)
Palm, M.; Risanti, D.-D.; Stallybrass, C.; Stein, F.; Sauthoff, G.: Strengthening of Corrosion-Resistant Fe–Al Alloys Through Intermetallic Precipitates. Discussion Meeting on the Development of Innovative Iron Aluminium Alloys, Düsseldorf, Germany (2004)
Stein, F.; Palm, M.; Sauthoff, G.: Mechanical Properties of Two-Phase Iron Aluminium Alloys with Zr(Fe,Al)2 Laves Phase or Zr(Fe,Al)12τ1 Phase. Discussion Meeting on the Development of Innovative Iron Aluminium Alloys, Düsseldorf, Germany (2004)
Stein, F.; Sauthoff, G.; Palm, M.: Experimental Determination of the Ternary Fe–Al–Zr Phase Diagram. Discussion Meeting on the Development of Innovative Iron Aluminium Alloys, Düsseldorf, Germany (2004)
Prakash, U.; Sauthoff, G.; Parvathavarthini, N.; Dayal, R. K.: Hydrogen Effects in Iron Aluminides Containing Carbon. International Symposium on Recent Advances in Inorganic Materials (RAIM02), Bombay, India (2002)
Palm, M.; Sauthoff, G.: Manufacturing and Testing of a Novel Advanced NiAl-Base Alloy for Gas Turbine Applications. Materials for Advanced Power Engineering 2002 (Proc. 7th Liège Conference), Liege (2002)
Stein, F.; Palm, M.; Sauthoff, G.: New results on intermetallic phases, phase equilibria, and phase transformation temperatures in the Fe–Zr system. Materials Week 2000, München, Germany (2000)
Eumann, M.; Palm, M.; Sauthoff, G.: Constitution, Microstructure and Mechanical Properties of Ternary Fe–Al–Mo Alloys. EUROMAT 99, Munich, Germany (1999)
Palm, M.; Gorzel, A. H.; Letzig, D.; Sauthoff, G.: Structure and Mechanical Properties of Ti–Al–Fe Alloys at Ambient and High Temperatures. Structural Intermetallics 1997, Seven Springs, PA, USA (1997)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
This project will aim at developing MEMS based nanoforce sensors with capacitive sensing capabilities. The nanoforce sensors will be further incorporated with in situ SEM and TEM small scale testing systems, for allowing simultaneous visualization of the deformation process during mechanical tests
The utilization of Kelvin Probe (KP) techniques for spatially resolved high sensitivity measurement of hydrogen has been a major break-through for our work on hydrogen in materials. A relatively straight forward approach was hydrogen mapping for supporting research on hydrogen embrittlement that was successfully applied on different materials, and…
It is very challenging to simulate electron-transfer reactions under potential control within high-level electronic structure theory, e. g. to study electrochemical and electrocatalytic reaction mechanisms. We develop a novel method to sample the canonical NVTΦ or NpTΦ ensemble at constant electrode potential in ab initio molecular dynamics…
Photovoltaic materials have seen rapid development in the past decades, propelling the global transition towards a sustainable and CO2-free economy. Storing the day-time energy for night-time usage has become a major challenge to integrate sizeable solar farms into the electrical grid. Developing technologies to convert solar energy directly into…
Crystal Plasticity (CP) modeling [1] is a powerful and well established computational materials science tool to investigate mechanical structure–property relations in crystalline materials. It has been successfully applied to study diverse micromechanical phenomena ranging from strain hardening in single crystals to texture evolution in…