Grabowski, B.; Wippermann, S. M.; Glensk, A.; Hickel, T.; Neugebauer, J.: Random phase approximation up to the melting point: Impact of anharmonicity and nonlocal many-body effects on the thermodynamics of Au. DPG Spring Meeting 2015, Berlin, Germany (2015)
Nugraha, T. A.; Wippermann, S. M.: Understanding 3C-SiC/SiO2 interfaces in SiC-nanofiber based solar cells from ab initio theory. APS March Meeting 2015, San Antonio, TX, USA (2015)
Scalise, E.; Wippermann, S. M.; Galli, G.: Nanointerfaces in InAs-Sn2S6 nanocrystal-ligand networks: atomistic and electronic structure from first principles. APS March Meeting 2015, San Antonio, TX, USA (2015)
Scalise, E.; Wippermann, S. M.; Galli, G.: Nanointerfaces in InAs-Sn2S6 nanocrystal-ligand networks: atomistic and electronic structure from first principles. 79th Annual Meeting of the DPG and DPG Spring Meeting, Berlin, Germany (2015)
Wippermann, S. M.; Schmidt, W. G.; Oh, D. M.; Yeom, H. W.: Impurity-mediated early condensation of an atomic layer electronic crystal: oxygen-adsorbed In/Si(111)-(4×1)/(8×2). DPG Spring Meeting 2015, Berlin, Germany (2015)
Yang, L.; Tecklenburg, S.; Fang, N.; Erbe, A.; Wippermann, S. M.; Gygi, F.; Galli, G.: A joint first principles and ATR-IR study of the vibrational properties of interfacial water at Si(100):H-H2O solid-liquid interfaces. APS March Meeting 2015 , San Antonio, TX, USA (2015)
Wippermann, S. M.; Schmidt, W. G.: In/Si(111)-(4×1)/(8×2): a fascinating model system for one-dimensional conductors. DPG March Meeting 2014, Berlin, Germany (2014)
Wippermann, S. M.; Schmidt, W. G.: In/Si(111)-(4x1)/(8x2): A fascinating model system for one-dimensional conductors. DPG Spring Meeting, Dresden, Germany (2014)
Scalise, E.; Wippermann, S. M.; Galli, G.: Nanointerfaces in semiconducting nanocomposites: atomistic and electronic structure from first principles. PSI-K 2015 Conference , San Sebastian, Spain (2015)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
This project will aim at developing MEMS based nanoforce sensors with capacitive sensing capabilities. The nanoforce sensors will be further incorporated with in situ SEM and TEM small scale testing systems, for allowing simultaneous visualization of the deformation process during mechanical tests
The utilization of Kelvin Probe (KP) techniques for spatially resolved high sensitivity measurement of hydrogen has been a major break-through for our work on hydrogen in materials. A relatively straight forward approach was hydrogen mapping for supporting research on hydrogen embrittlement that was successfully applied on different materials, and…
It is very challenging to simulate electron-transfer reactions under potential control within high-level electronic structure theory, e. g. to study electrochemical and electrocatalytic reaction mechanisms. We develop a novel method to sample the canonical NVTΦ or NpTΦ ensemble at constant electrode potential in ab initio molecular dynamics…
Photovoltaic materials have seen rapid development in the past decades, propelling the global transition towards a sustainable and CO2-free economy. Storing the day-time energy for night-time usage has become a major challenge to integrate sizeable solar farms into the electrical grid. Developing technologies to convert solar energy directly into…
Crystal Plasticity (CP) modeling [1] is a powerful and well established computational materials science tool to investigate mechanical structure–property relations in crystalline materials. It has been successfully applied to study diverse micromechanical phenomena ranging from strain hardening in single crystals to texture evolution in…