Varnik, F.: Can microscale wall roughness trigger unsteady/chaotic flows ? 5th International Workshop on Complex Systems, American Institute of Physics, Sendai, Japan (2007)
Varnik, F.: Two-dimensional lattice Boltzmann studies of the effects of wall roughness/channel design on the flow at moderate Reynolds numbers. IUTAM Symposium on Advances in Micro-& Nanofluidics, Dresden, Germany (2007)
Varnik, F.: Lattice Boltzmann studies of binary liquids and liquid-vapor systems beyond equilibrium. Leibniz Institute for Polymer Research, Dresden, Germany (2007)
Varnik, F.: A comprehensive introduction to lattice Boltzmann methods in materials science and engineering. Fritz-Haber Institut der Max-Planck Gesellschaft, Berlin, Germany (2007)
Varnik, F.: Non linear rheology and dynamic yielding in a simple glass: A molecular dynamics study. School of Physics, University of Edinburgh, UK (2006)
Varnik, F.: Chaotic lubricant flows in metal forming: Some new insights from lattice Boltzmann simulations. Seminar Talk at MPI für Eisenforschung GmbH, Düsseldorf, Germany (2006)
Varnik, F.: Lattice Boltzmann simulations of moderate Reynolds number flows in strongly confined channels: The role of the wall roughness. Massachussets Institute of Technology (MIT), Boston, MA, USA (2006)
Varnik, F.: MD simulations of steady state yielding in a simple glass. 31st Middle Euoropean Cooperation on Statistical Physics (MECO31), Primošten, Croatia (2006)
Varnik, F.: Rheological response of a model glass: Theory versus computer simulation. 2nd International workshop on dynamics in viscous liquids, Mainz, Germany (2006)
Varnik, F.; Raabe, D.: Lattice Boltzmann studies of flow instability in microchannels: The role of the surface roughness/topology. Laboratoire de Physique et de la Matiere Condensee et Nanostructure, Universite Claude Bernard, Lyon1, France (2005)
Varnik, F.: Complex rheology of simple systems: Shear thinning, dynamic versus static yielding and flow heterogeneity. CECAM-Workshop on Simulating deformed glasses and melts: From simple liquids to polymers, Lyon, France (2005)
Varnik, F.: Rheology of dense amorphous systems: Recent theories versus molecular dynamics simulations. 5th International Discussion Meeting on Relaxation in Complex Systems, Lille, France (2005)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
This project aims to develop a testing methodology for the nano-scale samples inside an SEM using a high-speed nanomechanical low-load sensor (nano-Newton load resolution) and high-speed dark-field differential phase contrast imaging-based scanning transmission electron microscopy (STEM) sensor.
The thorough, mechanism-based, quantitative understanding of dislocation-grain boundary interactions is a central aim of the Nano- and Micromechanics group of the MPIE [1-8]. For this purpose, we isolate a single defined grain boundary in micron-sized sample. Subsequently, we measure and compare the uniaxial compression properties with respect to…
The goal of this project is the investigation of interplay between the atomic-scale chemistry and the strain rate in affecting the deformation response of Zr-based BMGs. Of special interest are the shear transformation zone nucleation in the elastic regime and the shear band propagation in the plastic regime of BMGs.
In this project we developed a phase-field model capable of describing multi-component and multi-sublattice ordered phases, by directly incorporating the compound energy CALPHAD formalism based on chemical potentials. We investigated the complex compositional pathway for the formation of the η-phase in Al-Zn-Mg-Cu alloys during commercial…