Bleskov, I.; Hickel, T.; Neugebauer, J.: Impact of Local Magnetism on Planar Defects in Pure Iron. SFB-761 Annual Meeting 2013, Herdecke, Germany (2013)
Bleskov, I.; Körmann, F.; Hickel, T.; Neugebauer, J.: Impact of Magnetism on Thermodynamic Properties of Iron. International Symposium “Frontiers In Electronic Structure Theory And Multi Scale Modeling” (FEST-VEK), Moscow, Russia (2013)
Körmann, F.; Dick, A.; Grabowski, B.; Hickel, T.; Neugebauer, J.: The influence of magnetic excitations on the phase stability of metals and steels. Seminar Talk at Institute for Pure and Applied Math, UCLA, University of California, Los Angeles, CA, USA (2012)
Nazarov, R.; Hickel, T.; Neugebauer, J.: Consequences of H-Vacancy Interactions: An Ab Initio Insight. International Hydrogen Conference, Jackson Lake Lodge, Moran, WY, USA (2012)
Palumbo, M.; Fries, S. G.; Hammerschmidt, T.; Körmann, F.; Hickel, T.: SAPIENS thermophysical database for pure elements: DFT and experiments. 18th Symposium on Thermophysical Properties, Boulder, CO, USA (2012)
Körmann, F.; Grabowski, B.; Hickel, T.; Neugebauer, J.: Advancing ab initio methods to finite temperatures: The opening of new routes in materials design. Seminar Talk at Institute on Quantum Materials Science, Yekaterinburg, Russia (2012)
Dick, A.; Körmann, F.; Hickel, T.; Neugebauer, J.: Thermodynamic properties of cementite including magnetic, vibronic, and electronic excitations from ab initio. TMS Annual meeting 2012, Orlando, FL, USA (2012)
Hickel, T.: Advancing ab initio methods to finite temperatures: The opening of new routes in materials design. Physikalisches Kolloquium der Ruhr-Universität Bochum, Bochum, Germany (2012)
Hickel, T.; Sandschneider, N.; Friák, M.; Neugebauer, J.; Ouyang, Y.: Ab initio determination of point defects and derived diffusion properties in metals. TMS Annual meeting 2012, Orlando, FL, USA (2012)
Liot, F.; Friák, M.; Hickel, T.; Neugebauer, J.: The influence of ternary additions in the Fe2Nb C14 Laves phase. ICAMS Advanced Discussions, Bochum, Germany (2012)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In this project we study the development of a maraging steel alloy consisting of Fe, Ni and Al, that shows pronounced response to the intrinsic heat treatment imposed during Laser Additive Manufacturing (LAM). Without any further heat treatment, it was possible to produce a maraging steel that is intrinsically precipitation strengthened by an…
The aim of the current study is to investigate electrochemical corrosion mechanisms by examining the metal-liquid nanointerfaces. To achieve this, corrosive fluids will be strategically trapped within metal structures using novel additive micro fabrication techniques. Subsequently, the nanointerfaces will be analyzed using cryo-atom probe…
TiAl-based alloys currently mature into application. Sufficient strength at high temperatures and ductility at ambient temperatures are crucial issues for these novel light-weight materials. By generation of two-phase lamellar TiAl + Ti3Al microstructures, these issues can be successfully solved. Because oxidation resistance at high temperatures is…
We plan to investigate the rate-dependent tensile properties of 2D materials such as metal thin films and PbMoO4 (PMO) films by using a combination of a novel plan-view FIB based sample lift out method and a MEMS based in situ tensile testing platform inside a TEM.