Vega-Paredes, M.; Garzón-Manjón, A.; Rivas Rivas, N. A.; Berova, V.; Hengge, K. A.; Gänsler, T.; Jurinsky, T.; Scheu, C.: Ruthenium-Platinum Core-Shell Nanoparticles as durable, CO tolerant catalyst for Polymer Electrolyte Membrane Fuel Cells. 5th International Caparica Symposium on Nanoparticles/Nanomaterials and Applications (ISN2A), Online (accepted)
Scheu, C.; Zhang, S.: Hematite for light induced water splitting – improving efficiency by tuning distribution of Sn dopants at the atomic scale. Karlsruher Werkstoffkolloquium_Digital (2021)
Scheu, C.; Hengge, K. A.: Insights in the stability of Pt/Ru catalyst and the effect for polymer electrolyte membrane fuel cells. Thermec 2021, Online Conference (2021)
Aymerich Armengol, R.; Lim, J.; Ledendecker, M.; Scheu, C.: The devil is in the details: correlating SMSI catalyst encapsulation layers with electrochemical properties. ElecNano9 2020, online, Paris, France (2020)
Scheu, C.: Atomic-scale characterization of complex solid solution nanoparticles using TEM. Workshop on High Entropy Alloy and Complex Solid Solution Nanoparticles for Electrocatalysis, RUB, online, Bochum, Germany (2020)
Scheu, C.: Co-organizer of the International Seminar Series on the Microstructure of Materials (on-line). International Seminar Series on the Microstructure of Materials, online (2020)
Scheu, C.; Hieke, S. W.: How stable are thin Aluminium films: Dewetting phenomena observed by in-situ electron microscopy. Microscopy Conference 2019 (MC2019), Berlin, Germany (2019)
Scheu, C.; Hieke, S. W.: Fundamentals and Applications of Electron Energy-Loss Spectroscopy in a Scanning Transmission Electron Microscope. Universita' Roma Tre Colloquium, Roma, Italy (2019)
Scheu, C.: Materials for renewable energy applications. Metallurgical Engineering and Materials Science Department Colloquium, Indian Institute of Technology, Mumbai, India (2019)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In this EU Horizon project, we at MPIE, will focus on the sustainable pre-reduction of manganese ores with hydrogen, especially the kinetic analysis of the reduction process using thermogravimetry analysis and an in-depth understand the role of microstructure and local chemistry in the reduction process.
Understanding the deformation mechanisms observed in high performance materials, such as superalloys, allows us to design strategies for the development of materials exhibiting enhanced performance. In this project, we focus on the combination of structural information gained from electron microscopy and compositional measurements from atom probe…
This project aims to develop a micromechanical metrology technique based on thin film deposition and dewetting to rapidly assess the dynamic thermomechanical behavior of multicomponent alloys. This technique can guide the alloy design process faster than the traditional approach of fabrication of small-scale test samples using FIB milling and…
Understanding hydrogen-microstructure interactions in metallic alloys and composites is a key issue in the development of low-carbon-emission energy by e.g. fuel cells, or the prevention of detrimental phenomena such as hydrogen embrittlement. We develop and test infrastructure, through in-situ nanoindentation and related techniques, to study…