Grabowski, B.: Ab initio calculation of thermodynamic properties of metals: xc-related error bars and chemical trends. ADIS 2006, Ringberg Castle, Germany (2006)
Hickel, T.; Grabowski, B.; Neugebauer, J.: Temperature dependent properites of Shape-memory alloys. Physics Seminar of Loughborough University, Loughborough, UK (2006)
Grabowski, B.: Ab initio based free energy surfaces: A tool to derive temperature dependent thermodynamic and kinetic parameters. DPG-Jahrestagung, Berlin, Germany (2005)
Zhu, L.-F.; Neugebauer, J.; Grabowski, B.: A computationally highly efficient ab initio approach for melting property calculations and practical applications. CALPHAD 2024, Mannheim, Germany (2024)
Dutta, B.; Körmann, F.; Alling, B.; Grabowski, B.; Hickel, T.; Neugebauer, J.: Interaction of magnetic and lattice degrees of freedom. International Workshop on Ab initio Description of Iron and Steel: Mechanical Properties (ADIS 2016), Ringberg Castle, Tegernsee, Germany (2016)
Glensk, A.; Grabowski, B.; Hickel, T.; Neugebauer, J.: CALPHAD assessments using T > 0K ab initio data: From quasiharmonic to local anharmonic approximation. CALPHAD 2015, Loano, Italy (2015)
Lai, M.; Tasan, C. C.; Zhang, J.; Grabowski, B.; Huang, L.; Springer, H.; Raabe, D.: ω phase accommodated nano-twinning mechanism in Gum Metal: An ab initio study. 3rd International Workshop on Physics Based Material Models and Experimental Observations: Plasticity and Creep, Cesme/Izmir, Turkey (2014)
Grabowski, B.; Hickel, T.; Neugebauer, J.: Ab initio concepts for an efficient and accurate determination of thermodynamic properties up to the melting point. Summer School: Computational Materials Science, San Sebastian, Spain (2010)
Körmann, F.; Dick, A.; Grabowski, B.; Hickel, T.; Neugebauer, J.: Magnetic contributions to the Thermodynamics of iron and Cementite. 448. WE-Heraeus-Seminar "Excitement in magnetism", Ringberg Castle, Tegernsee, Germany (2009)
Grabowski, B.; Hickel, T.; Neugebauer, J.: Ab initio up to the melting point: Anharmonicity and vacancies in aluminum. International Workshop on Multiscale Materials Modelling (IWoM3), Berlin, Germany (2009)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Hydrogen is a clean energy source as its combustion yields only water and heat. However, as hydrogen prefers to accumulate in the concentrated stress region of metallic materials, a few ppm Hydrogen can already cause the unexpected sudden brittle failure, the so-called “hydrogen embrittlement”. The difficulties in directly tracking hydrogen limits…
This project with the acronym GB-CORRELATE is supported by an Advanced Grant for Gerhard Dehm by the European Research Council (ERC) and started in August 2018. The project GB-CORRELATE explores the presence and consequences of grain boundary phase transitions (often termed “complexions” in literature) in pure and alloyed Cu and Al. If grain size…
The project HyWay aims to promote the design of advanced materials that maintain outstanding mechanical properties while mitigating the impact of hydrogen by developing flexible, efficient tools for multiscale material modelling and characterization. These efficient material assessment suites integrate data-driven approaches, advanced…
The segregation of impurity elements to grain boundaries largely affects interfacial properties and is a key parameter in understanding grain boundary (GB) embrittlement. Furthermore, segregation mechanisms strongly depend on the underlying atomic structure of GBs and the type of alloying element. Here, we utilize aberration-corrected scanning…