Kang, S. G.; Gainov, R.; Heußen, D.; Bieler, S.; Sun, Z.; Weinberg, K.; Dehm, G.; Ramachandramoorthy, R.: Green laser powder bed fusion based fabrication and rate-dependent mechanical properties of copper lattices. Materials and Design 231, 112023 (2023)
Bieler, S.; Kang, S. G.; Heußen, D.; Ramachandramoorthy, R.; Dehm, G.; Weinberg, K.: Investigation of copper lattice structures using a Split Hopkinson Pressure Bar. Proceedings of Applied Mathematics and Mechanics, Special Issue: 92nd Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM) 21 (1), e202100155, (2021)
Ramachandramoorthy, R.: High strain rate testing of copper based micropillars and microlattices. 206 Departmental Seminar Series, Empa, Thun, Switzerland (2021)
Ramachandramoorthy, R.: Pushing the limits of microscale manufacturing and mechanical testing. Department of Material Science and Engineering Seminar Series, Tel-Aviv University, online, Tel-Aviv, Israel (2021)
Ramachandramoorthy, R.: High strain rate testing from micro-to-meso scale. MRS Spring 2021 Conference - In Situ Mechanical Testing of Materials at Small Length Scales, Modeling and Data Analysis Symposium, online (2021)
Ramachandramoorthy, R.: High strain rate micromechanics: Instrumentation and implementation. DGM - Arbeitskreis Rasterkraftmikroskopie und nanomechanische Methoden, online (2020)
Bellón Lara, B.; Lu, W.; Fang, X.; Dehm, G.; Ramachandramoorthy, R.: Effect of Defects on the Dynamic Compression of Strontium Titanate Micropillars. ECI Nanomechanical Testing in Materials Research and Development IX, Sicily, Italy (2024)
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
Statistical significance in materials science is a challenge that has been trying to overcome by miniaturization. However, this process is still limited to 4-5 tests per parameter variance, i.e. Size, orientation, grain size, composition, etc. as the process of fabricating pillars and testing has to be done one by one. With this project, we aim to…
Atom probe tomography (APT) provides three dimensional(3D) chemical mapping of materials at sub nanometer spatial resolution. In this project, we develop machine-learning tools to facilitate the microstructure analysis of APT data sets in a well-controlled way.
Atom probe tomography (APT) is one of the MPIE’s key experiments for understanding the interplay of chemical composition in very complex microstructures down to the level of individual atoms. In APT, a needle-shaped specimen (tip diameter ≈100nm) is prepared from the material of interest and subjected to a high voltage. Additional voltage or laser…
Ever since the discovery of electricity, chemical reactions occurring at the interface between a solid electrode and an aqueous solution have aroused great scientific interest, not least by the opportunity to influence and control the reactions by applying a voltage across the interface. Our current textbook knowledge is mostly based on mesoscopic…