Hamilton, J.; Gianotti, S.; Fischer, J.; Della Fara, G.; Impergre, A.; De Vecchi, F.; AbuAlia, M.; Fischer, A.; Markovics, A.; Wimmer, M.: Electrophoretic Deposition of Gentamicin Into Titania Nanotubes Prevents Evidence of Infection in a Mouse Model of Periprosthetic Joint Infection. Journal of Orthopaedic Research (2025)
Wittrock, A.; Heermant, S.; Beckmann, C.; Wimmer, M.; Fischer, A.; Aßmann, M.; Debus, J.: Protein-metal interactions due to fretting corrosion at the taper junction of hip implants: An in vitro investigation using Raman spectroscopy. Acta Biomaterialia 189, pp. 621 - 632 (2024)
Fara, G. D.; Markovics, A.; Radice, S.; Hamiton, J. L.; Chiesa, R.; Sturm, A.; Angenendt, K.; Fischer, A.; Wimmer, M. A.: Electrophoretic deposition of gentamicin and chitosan into titanium nanotubes to target periprosthetic joint infection. Journal of Biomedical Materials Research Part B-Applied Biomaterials 111 (9), pp. 1697 - 1704 (2023)
Fischer, A.: Wear and Repassivation Rates of Orthopedic Metal Implants in Simulated Healthy and Inflammatory Synovial Fluids. World Tribology Congress 2022, Lyon, France (2022)
Fischer, A.: Ultra-Mild Fretting Wear – A different angle. University of Leeds, School of Mechanical Engineering, Fretting Focus Group Seminar, Leeds, UK (2022)
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
Ever since the discovery of electricity, chemical reactions occurring at the interface between a solid electrode and an aqueous solution have aroused great scientific interest, not least by the opportunity to influence and control the reactions by applying a voltage across the interface. Our current textbook knowledge is mostly based on mesoscopic…
Recent developments in experimental techniques and computer simulations provided the basis to achieve many of the breakthroughs in understanding materials down to the atomic scale. While extremely powerful, these techniques produce more and more complex data, forcing all departments to develop advanced data management and analysis tools as well as…
Integrated Computational Materials Engineering (ICME) is one of the emerging hot topics in Computational Materials Simulation during the last years. It aims at the integration of simulation tools at different length scales and along the processing chain to predict and optimize final component properties.
Data-rich experiments such as scanning transmission electron microscopy (STEM) provide large amounts of multi-dimensional raw data that encodes, via correlations or hierarchical patterns, much of the underlying materials physics. With modern instrumentation, data generation tends to be faster than human analysis, and the full information content is…