Yamada, K.; Horiuchi, T.; Stein, F.; Miura, M.: Effect of Metastable Co3Nb on Microstructural Evolution in Co–Nb Binary Alloys. JIM Spring Meeting 2018, Chiba, Japan (2018)
Stein, F.; He, C.: About the Limits of Applicability of the Alkemade Theorem for the Construction of Ternary Liquidus Surfaces. CALPHAD XLVI Conference, Saint-Malo, France (2017)
Li, X.; Stein, F.: Coarsening of Lamellar Microstructures. 63rd Metal Research Colloquium organized by the Department for Metal Research and Materials Testing of the University Leoben, Lech am Arlberg, Austria (2017)
Luo, W.; Kirchlechner, C.; Dehm, G.; Stein, F.: Fracture Toughness of Hexagonal and Cubic NbCo2 Laves Phases. Nanobrücken 2017, European Nanomechanical Testing Conference, University of Manchester, Manchester, UK (2017)
Horiuchi, T.; Stein, F.; Abe, K.; Taniguchi, S.: Formation of Complex Intermetallic Phases from Supersaturated Co Solid Solution in a Co–3.9Nb Alloy. TMS 2017 Annual Meeting, San Diego, CA, USA (2017)
Stein, F.: Stability Competition between Laves Phase Polytypes. Escola Politécnica da Universidade de São Paulo, University Sao Paulo, Sao Paulo, Brazil (2016)
Stein, F.; Philips, N.: High-Temperature Phase Equilibria and Solidification Behaviour of Nb-rich Nb–Al–Fe Alloys. TOFA 2016, Discussion Meeting on Thermodynamics of Alloys, Santos, Brazil (2016)
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
Statistical significance in materials science is a challenge that has been trying to overcome by miniaturization. However, this process is still limited to 4-5 tests per parameter variance, i.e. Size, orientation, grain size, composition, etc. as the process of fabricating pillars and testing has to be done one by one. With this project, we aim to…
Atom probe tomography (APT) provides three dimensional(3D) chemical mapping of materials at sub nanometer spatial resolution. In this project, we develop machine-learning tools to facilitate the microstructure analysis of APT data sets in a well-controlled way.
Atom probe tomography (APT) is one of the MPIE’s key experiments for understanding the interplay of chemical composition in very complex microstructures down to the level of individual atoms. In APT, a needle-shaped specimen (tip diameter ≈100nm) is prepared from the material of interest and subjected to a high voltage. Additional voltage or laser…
Ever since the discovery of electricity, chemical reactions occurring at the interface between a solid electrode and an aqueous solution have aroused great scientific interest, not least by the opportunity to influence and control the reactions by applying a voltage across the interface. Our current textbook knowledge is mostly based on mesoscopic…