Scheu, C.: Structural and functional properties of Nb3O7(OH) nanoarrays and their modification via doping and thermal annealing. Talk at Institut für Werkstofftechnik, Technische Universität Ilmenau, Ilmenau, Gemany (2017)
Scheu, C.: Interface structure of Kappa-Carbides in high Mn Steels. 3 Phase, Interface, Component Systems (PICS), Centre Interdisciplinaire de Nanoscience de Marseille (CINaM), Marseille, France (2017)
Raabe, D.; Gault, B.; Yao, M.; Scheu, C.; Liebscher, C.; Herbig, M.: Correlated and simulated electron microscopy and atom probe tomography. Workshop on Possibilities and Limitations of Quantitative Materials Modeling and Characterization 2017, Bernkastel, Germany (2017)
Scheu, C.: Grain growth and dewetting of thin Al films on (0001) Al2O3 substrates. 3 Phase, Interface, Component Systems (PICS), Centre Interdisciplinaire de Nanoscience de Marseille (CINaM), Marseille, France (accepted)
Scheu, C.: In-situ Transmission Electron Microscopy Observation of Heat-Induced Structural Changes of 3D Nb3O(OH) Networks. Electronic Materials and Applications 2017 (EMA), Orlando, FL, USA (2017)
Scheu, C.: Insights into structural and functional properties of Nb3O7(OH) and TiO2 nanoarrays. European Materials Research Society’s (EMRS) Fall Meeting, Warsaw, Poland (2016)
Scheu, C.: Transmission electron microscopy – a versatile tool to study the microstructure of HT-PEMFC. Materials Science 2016, Atlanta, GA, USA (2016)
Scheu, C.: Insights into structural and functional properties of nano-structured electrodes for energy and fuel generating devices. Talk at Helmholtz‐Zentrum Geesthacht, Geesthacht, Germany (2016)
Scheu, C.: Correlative STEM & Atom Probe Tomography (ATP): Insights in the k-carbide/austenite interface. Workshop on “New trends in electron microscopy”, Ringberg Castle, Kreuth am Tegernsee, Germany (2016)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
The structures of grain boundaries (GBs) have been investigated in great detail. However, much less is known about their chemical features, owing to the experimental difficulties to probe these features at the near-atomic scale inside bulk material specimens. Atom probe tomography (APT) is a tool capable of accomplishing this task, with an ability…
Hydrogen embrittlement is one of the most substantial issues as we strive for a greener future by transitioning to a hydrogen-based economy. The mechanisms behind material degradation caused by hydrogen embrittlement are poorly understood owing to the elusive nature of hydrogen. Therefore, in the project "In situ Hydrogen Platform for…
Complex simulation protocols combine distinctly different computer codes and have to run on heterogeneous computer architectures. To enable these complex simulation protocols, the CM department has developed pyiron.
Water electrolysis has the potential to become the major technology for the production of the high amount of green hydrogen that is necessary for its widespread application in a decarbonized economy. The bottleneck of this electrochemical reaction is the anodic partial reaction, the oxygen evolution reaction (OER), which is sluggish and hence…
The computational materials design department in collaboration with the Technical University Darmstadt and the Ruhr University Bochum developed a workflow to calculate phase diagrams from ab-initio. This achievement is based on the expertise in the ab-initio thermodynamics in combination with the recent advancements in machine-learned interatomic…
The structure of grain boundaries (GBs) is dependent on the crystallographic structure of the material, orientation of the neighbouring grains, composition of material and temperature. The abovementioned conditions set a specific structure of the GB which dictates several properties of the materials, e.g. mechanical behaviour, diffusion, and…