Cautaerts, N.; Rauch, E. F.; Jeong, J.; Dehm, G.; Liebscher, C.: Investigation of the orientation relationship between nano-sized G-phase precipitates and austenite with scanning nano-beam electron diffraction using a pixelated detector. Scripta Materialia 201, 113930 (2021)
Jeong, J.; Jang, W.-S.; Kim, K. H.; Kostka, A.; Gu, G.; Kim, Young, Y.-M.; Oh, S. H.: Crystallographic Orientation Analysis of Nanocrystalline Tungsten Thin Film Using TEM Precession Electron Diffraction and SEM Transmission Kikuchi Diffraction. Microscopy and Microanalysis 27 (2), pp. 237 - 249 (2021)
Kiener, D.; Jeong, J.; Alfreider, M.; Konetschnik, R.; Oh, S. H.: Prospects of using small scale testing to examine different deformation mechanisms in nanoscale single crystals - A case study in Mg. Crystals 11 (1), 61 (2021)
Jeong, J.: Advanced transmission electron microscopy of nanomaterials using In-situ TEM and precession electron diffraction. Seminar, Korea Institute of Industrial Technology (KITECH), Seoul, South Korea (2019)
Jeong, J.: Advanced transmission electron microscopy of nanomaterials using In-situ TEM and precession electron diffraction. Seminar, Korea Institute of Materials Science (KIMS), Seoul, South Korea (2019)
Jeong, J.: Advanced transmission electron microscopy of nanomaterials using In-situ TEM and precession electron diffraction. Seminar, Korea Institute of Science and Technology (KIST), Seoul, South Korea (2019)
Jeong, J.; Dehm, G.; Liebscher, C.: Advances in automatic TEM based orientation mapping with precession electron diffraction. KSM Annual Fall Conference 2019, Gyeongju, South Korea (2019)
Jeong, J.; Kim, J.; Kiener, D.; Oh, S. H.: In-situ TEM observation of twin-dominated deformation of Mg single crystals. KSM Annual Fall Conference 2019, Gyeongju, South Korea (2019)
Jeong, J.; Dehm, G.; Liebscher, C.: Advances in automatic TEM based orientation mapping with precession electron diffraction. Joint Max-Planck-Institut für Eisenforschung MPIE) / Ernst Ruska-Centre (ER-C) Workshop, Düsseldorf, Germany (2019)
Jeong, J.; Dehm, G.; Liebscher, C.: Advances in automatic TEM based orientation mapping with precession electron diffraction. International Workshop on Advanced In Situ Microscopies
of Functional Nanomaterials and Devices (IAMnano 2019), Düsseldorf, Germany (2019)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
Electron channelling contrast imaging (ECCI) is a powerful technique for observation of extended crystal lattice defects (e.g. dislocations, stacking faults) with almost transmission electron microscopy (TEM) like appearance but on bulk samples in the scanning electron microscope (SEM).
About 90% of all mechanical service failures are caused by fatigue. Avoiding fatigue failure requires addressing the wide knowledge gap regarding the micromechanical processes governing damage under cyclic loading, which may be fundamentally different from that under static loading. This is particularly true for deformation-induced martensitic…
A high degree of configurational entropy is a key underlying assumption of many high entropy alloys (HEAs). However, for the vast majority of HEAs very little is known about the degree of short-range chemical order as well as potential decomposition. Recent studies for some prototypical face-centered cubic (fcc) HEAs such as CrCoNi showed that…
Decarbonisation of the steel production to a hydrogen-based metallurgy is one of the key steps towards a sustainable economy. While still at the beginning of this transformation process, with multiple possible processing routes on different technological readiness, we conduct research into the related fundamental scientific questions at the MPIE.
Within this project, we will use an infra-red laser beam source based selective powder melting to fabricate copper alloy (CuCrZr) architectures. The focus will be on identifying the process parameter-microstructure-mechanical property relationships in 3-dimensional CuCrZr alloy lattice architectures, under both quasi-static and dynamic loading…
We simulate the ionization contrast in field ion microscopy arising from the electronic structure of the imaged surface. For this DFT calculations of the electrified surface are combined with the Tersoff-Hamann approximation to electron tunneling. The approach allows to explain the chemical contrast observed for NiRe alloys.