Kuzmina, M.; Herbig, M.; Ponge, D.; Choi, P.-P.; Stoffers, A.; Sandlöbes, S.; Raabe, D.: Segregation engineering enables nanostructured dual-phase laminates via solute decoration and phase transformation at lattice defects. Colloquium lecture at Department of Mechanical Engineering, Technische Universiteit Eindhoven, Eindhoven, The Netherlands (2015)
Herbig, M.; Raabe, D.; Li, Y.; Choi, P.-P.; Zaefferer, S.; Goto, S.: Joint crystallographic and chemical characterization at the nanometer scale by correlative TEM and atom probe tomography. Workshop: White-etching layers in ball and roller bearings, Informatik-Zentrum Hörn, Aachen, Germany (2014)
Choi, P.-P.: Characterization of Ni- and Co-based superalloys using Atom Probe Tomography. International Workshop on Modelling and Simulation of Superalloys, Bochum, Germany (2014)
Jägle, E. A.; Tytko, D.; Choi, P.-P.; Raabe, D.: Deformation-induced intermixing in a model multilayer system. Atom Probe Tomography & Microscopy 2014, Stuttgart, Germany (2014)
Li, Y.; Ponge, D.; Choi, P.-P.; Raabe, D.: Segregation of boron at prior austenite grain boundaries in a quenched steel studied by atom probe tomography. Atom Probe Tomography & Microscopy 2014, Stuttgart, Germany (2014)
Herbig, M.; Li, Y.; Morsdorf, L.; Goto, S.; Choi, P.-P.; Kirchheim, R.; Raabe, D.: Recent Advances in Understanding the Structures and Properties of Nanomaterials. Gordon Research Conference on Structural Nanomaterials, The Chinese University of Hong Kong, Hong Kong, China (2014)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The aim of this project is to correlate the point defect structure of Fe1-xO to its mechanical, electrical and catalytic properties. Systematic stoichiometric variation of magnetron-sputtered Fe1-xO thin films are investigated regarding structural analysis by transition electron microscopy (TEM) and spectroscopy methods, which can reveal the defect…
Hydrogen embrittlement (HE) is one of the most dangerous embrittlement problems in metallic materials and advanced high-strength steels (AHSS) are particularly prone to HE with the presence of only a few parts-per-million of H. However, the HE mechanisms in these materials remain elusive, especially for the lightweight steels where the composition…
Conventional alloy development methodologies which specify a single base element and several alloying elements have been unable to introduce new alloys at an acceptable rate for the increasingly specialised application requirements of modern technologies. An alternative alloy development strategy searches the previously unexplored central regions…
The key to the design and construction of advanced materials with tailored mechanical properties is nano- and micro-scale plasticity. Significant influence also exists in shaping the mechanical behavior of materials on small length scales.