Krüger, T.: Hybrid LB-FEM modeling of dense suspensions of deformable particles under shear. SFB TR6 Seminar, Institut für Theoretische Physik II, HHU Düsseldorf, Germany (2011)
Krüger, T.: Mesoscopic modeling of red blood cell dynamics. Oberseminar: Theorie komplexer Systeme WS 2010, Institut für Theoretische Physik, Universität Heidelberg, Germany (2010)
Krüger, T.: Mesoscopic Modeling of the dynamics of red blood cells. Seminar talk at Ruhr-Universität Bochum, Lehrstuhl für Biophysik, Bochum, Germany (2010)
Krüger, T.: Analyzing blood properties by simulating suspensions of deformable particles: Shear stress and viscosity behavior. ICAMS Scientific Retreat, Akademie Biggesee, Attendorn (2010)
Krüger, T.: Simulation of a dense suspension of red blood cells. TU Braunschweig, Institut für rechnergestützte Modellierung im Bauingenieurwesen, Braunschweig, Germany (2010)
Ayodele, S. G.; Varnik, F.; Raabe, D.: Transverse diffusive broadening in pressure driven microchannels: A lattice Boltzmann study of the scaling laws. The XVth International Congress on Rheology, Monterey, CA. USA (2008)
Varnik, F.; Raabe, D.: Finite size driven droplet evaporation and kinetics of droplets: A lattice Boltzmann study. Sommer Workshop on Nano-& Microfluidics, Bad-Honnef, Germany (2008)
Varnik, F.: Some micro- and nanofluidic issues using a free energy based lattice Boltzmann approach: Finite size driven droplet evaporation and wetting dynamics on chemical gradients. Seminar at MPI für Metallforschung, Stuttgart, Germany (2008)
Varnik, F.: Stability and kinetics of droplets. The 5th International Conference for Mesoscopic Methods in Engineering, Amsterdam, The Netherlands (2008)
Varnik, F.: Flows driven by wettability gradients: A lattice Boltzmann study. DPG Spring Meeting of the Condensed Matter Division, Berlin, Germany (2008)
Varnik, F.: Lattice Boltzmann studies of non-ideal fluids: Droplet coalescence and wetting gradientinduced motion. Institute for Computational Physics, University of Stuttgart, Stuttgart, Germany (2007)
Varnik, F.: Lattice-Boltzmann simulations of multi-phase and multi-component systems. Max-Planck Workshop Multiscale Materials Modelling, Sant Feliu de Guixols, Spain (2007)
Varnik, F.: Discussion meeting on Lattice Boltzmann modeling and simulation of multicomponent and multiphase flows. Seminar Talk at TU-Braunschweig, Braunschweig, Germany (2007)
Varnik, F.: Diffusion, structural relaxation and rheological properties of a simple glass forming model: A molecular dynamics study. The 5th International Workshop on Complex Systems, Sendai, Japan (2007)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In this project, we aim to design novel NiCoCr-based medium entropy alloys (MEAs) and further enhance their mechanical properties by tuning the multiscale heterogeneous composite structures. This is being achieved by alloying of varying elements in the NiCoCr matrix and appropriate thermal-mechanical processing.
“Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…
The Ni- and Co-based γ/γ’ superalloys are famous for their excellent high-temperature mechanical properties that result from their fine-scaled coherent microstructure of L12-ordered precipitates (γ’ phase) in an fcc solid solution matrix (γ phase). The only binary Co-based system showing this special type of microstructure is the Co-Ti system…
In this project, we employ atomistic computer simulations to study grain boundaries. Primarily, molecular dynamics simulations are used to explore their energetics and mobility in Cu- and Al-based systems in close collaboration with experimental works in the GB-CORRELATE project.