Tjahjanto, D. D.; Eisenlohr, P.; Roters, F.: Relaxed grain cluster (RGC) scheme for polycrystals: Model formulation and solution strategy. Computational Mechanics of Polycrystals (CMCn) Workshop 2010, Bad Honnef, Germany (2010)
Eisenlohr, P.; Kords, C.; Roters, F.; Raabe, D.: A non-local crystal plasticity model based on polar dislocation densities. 16th Int. Symp. on Plasticity and Its Current Applications, St. Kitts, St. Federation of Saint Kitts and Nevis (2010)
Eisenlohr, P.; Tjahjanto, D. D.; Roters, F.; Raabe, D.: Coarse-graining of polycrystal plasticity with the Relaxed Grain Cluster scheme. Seminar des Instituts für Technische Mechanik, Karlsruher Institut für Technologie, Karlsruhe, Germany (2009)
Roters, F.; Demir, E.; Eisenlohr, P.: On the calculation of the geometrically necessary dislocation density in crystal plasticity FEM models. 1st International Conference on Material Modelling (ICMM 1), Dortmund, Germany (2009)
Tjahjanto, D. D.; Roters, F.; Eisenlohr, P.: Application of the relaxed grain cluster homogenization scheme to deep drawing simulation of dual-phase steel. 1st International Conference on Material Modelling (ICMM 1), Dortmund, Germany (2009)
Zambaldi, C.; Roters, F.; Zaefferer, S.; Raabe, D.: Crystal plasticity modeling for property extraction and the microstructure properties relation of intermetallic -TiAl nased alloys. 1st International Conference on Material Modelling (ICMM 1), Dortmund, Germany (2009)
Peranio, N.; Schulz, S.; Li, Y. J.; Roters, F.; Raabe, D.; Masimov, M.; Springub, G.: Processing of dual-phase steel for automotive applications: Microstructure and texture evolution during annealing and numerical simulation by cellular automata. Euromat 2009 (European Congress and Exhibition on Advanced Materials and Processes), Glasgow, UK (2009)
Eisenlohr, P.; Tjahjanto, D. D.; Roters, F.; Raabe, D.: Analysis of the relaxed grain cluster polycrystal homogenization scheme in texture prediction. 15th International Conference on the Strength of Materials (ICSMA-15), Dresden, Germany (2009)
Ma, D.; Raabe, D.; Roters, F.; Maaß, R.; van Swygenhoven, H.: Crystal plasticity finite element study on small scale plasticity of micropillars. 15th International Conference on the Strength of Materials (ICSMA-15), Dresden, Germany (2009)
Zambaldi, C.; Roters, F.; Raabe, D.: Crystal plasticity modeling and experiments for the microstructureproperties relationship in gamma TiAl based alloys. 15th International Conference on the Strength of Materials (ICSMA-15), Dresden, Germany (2009)
Ma, D.; Raabe, D.; Roters, F.; Maaß, R.; Van Swygenhoven, H.: Crystal Plasticity finite element method study on small scale plasticity. Deutsche Physikalische Gesellschaft 2009, Dresden, Germany (2009)
Roters, F.; Hantcherli, L.; Eisenlohr, P.: Incorporating Twinning into the Crystal Plasticity Finite Element Method. International Plasticity Conference 2009, Virgin Islands, USA (2009)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The goal of this project is the investigation of interplay between the atomic-scale chemistry and the strain rate in affecting the deformation response of Zr-based BMGs. Of special interest are the shear transformation zone nucleation in the elastic regime and the shear band propagation in the plastic regime of BMGs.
In this project we developed a phase-field model capable of describing multi-component and multi-sublattice ordered phases, by directly incorporating the compound energy CALPHAD formalism based on chemical potentials. We investigated the complex compositional pathway for the formation of the η-phase in Al-Zn-Mg-Cu alloys during commercial…
Hydrogen embrittlement (HE) of steel is a great challenge in engineering applications. However, the HE mechanisms are not fully understood. Conventional studies of HE are mostly based on post mortem observations of the microstructure evolution and those results can be misleading due to intermediate H diffusion. Therefore, experiments with a…
This project aims to investigate the influence of grain boundaries on mechanical behavior at ultra-high strain rates and low temperatures. For this micropillar compressions on copper bi-crystals containing different grain boundaries will be performed.