Kuo, J. C.; Zaefferer, S.; Raabe, D.: Experimental investigation of the deformation behavior of aluminium-bicrystals. MPI für Eisenforschung GmbH, Düsseldorf, Germany (2004)
Ma, A.; Roters, F.; Raabe, D.: Simulation of textures and Lankford values for face centered cubic polycrystaline metals by using a modified Taylor model. (2004)
Raabe, D.: A 3D probabilistic cellular automaton for the simulation of recrystallization and grain growth phenomena. Max-Planck-Society, München, Germany (2004)
Raabe, D.; Bréchet, Y.; Gottstein, G.; de Hosson, J.; Van Houtte, P.; Vitek, V.: Recommendations for Future Basic Research on Metallic Alloys and Composites in the 6th EU Framework Program - Metals and composites: Basis for growth, safety, and ecology. (2004)
Raabe, D.; Pramono, A.: Report on copper–niob research at the Max-Planck-Institut, Düsseldorf – Simulations and experiments. MPI für Eisenforschung, Düsseldorf, Germany (2004)
Sachtleber, M.; Raabe, D.: Theoretische und experimentelle Untersuchung der Kornwechselwirkung in Aluminium. MPI für Eisenforschung GmbH, Düsseldorf, Germany (2004)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Adding 30 to 50 at.% aluminum to iron results in single-phase alloys with an ordered bcc-based crystal structure, so-called B2-ordered FeAl. Within the extended composition range of this intermetallic phase, the mechanical behavior varies in a very particular way.
The structure of grain boundaries (GBs) is dependent on the crystallographic structure of the material, orientation of the neighbouring grains, composition of material and temperature. The abovementioned conditions set a specific structure of the GB which dictates several properties of the materials, e.g. mechanical behaviour, diffusion, and…
In this project, the effects of scratch-induced deformation on the hydrogen embrittlement susceptibility in pearlite is investigated by in-situ nanoscratch test during hydrogen charging, and atomic scale characterization. This project aims at revealing the interaction mechanism between hydrogen and scratch-induced deformation in pearlite.
Efficient harvesting of sunlight and (photo-)electrochemical conversion into solar fuels is an emerging energy technology with enormous promise. Such emerging technologies depend critically on materials systems, in which the integration of dissimilar components and the internal interfaces that arise between them determine the functionality.