Springer, H.; Tasan, C. C.; Raabe, D.: A novel roll-bonding methodology for the cross-scale analysis of phase properties and interactions in multiphase structural materials. International Journal of Materials Research 106 (1), pp. 3 - 14 (2015)
Tasan, C. C.; Hoefnagels, J. P.M.; Diehl, M.; Yan, D.; Roters, F.; Raabe, D.: Strain localization and damage in dual phase steels investigated by coupled in-situ deformation experiments and crystal plasticity simulations. International Journal of Plasticity 63, pp. 198 - 210 (2014)
Wang, M.; Tasan, C. C.; Ponge, D.; Kostka, A.; Raabe, D.: Smaller is less stable: Size effects on twinning vs. transformation of reverted austenite in TRIP-maraging steels. Acta Materialia 79, pp. 268 - 281 (2014)
Yao, M.; Pradeep, K. G.; Tasan, C. C.; Raabe, D.: A novel, single phase, non-equiatomic FeMnNiCoCr high-entropy alloy with exceptional phase stability and tensile ductility. Scripta Materialia 72–73, pp. 5 - 8 (2014)
Tasan, C. C.; Hoefnagels, J. P. M.; Dekkers, E. C. A.; Geers, M. G. D.: Multi-Axial Deformation Setup for Microscopic Testing of Sheet Metal to Fracture. Experimental Mechanics 52 (7), pp. 669 - 678 (2012)
Tasan, C. C.; Hoefnagels, J. P. M.; Geers, M.G. D.: Identification of the continuum damage parameter: An experimental challenge in modeling damage evolution. Acta Materialia 60 (8), pp. 3581 - 3589 (2012)
Tasan, C. C.; Hoefnagels, J. P. M.; Geers, M. G. D.: A micropillar compression methodology for ductile damage quantification. Metallurgical and Materials Transactions A 43 (3), pp. 796 - 801 (2012)
Tasan, C. C.; Hoefnagels, J.P.M.; Geers, M.G.D.: Microstructural Banding Effects Clarified Through Micrographic Digital Image Correlation. Scripta Materialia 62 (11), pp. 835 - 838 (2010)
Tasan, C. C.; Hoefnagels, J.P.M.; Geers, M.G.D.: A brittle-fracture methodology for three-dimensional visualization of ductile deformation micromechanisms. Scripta Materialia 61 (1), pp. 20 - 23 (2009)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The aim of this project is to correlate the point defect structure of Fe1-xO to its mechanical, electrical and catalytic properties. Systematic stoichiometric variation of magnetron-sputtered Fe1-xO thin films are investigated regarding structural analysis by transition electron microscopy (TEM) and spectroscopy methods, which can reveal the defect…
Hydrogen embrittlement (HE) is one of the most dangerous embrittlement problems in metallic materials and advanced high-strength steels (AHSS) are particularly prone to HE with the presence of only a few parts-per-million of H. However, the HE mechanisms in these materials remain elusive, especially for the lightweight steels where the composition…
Conventional alloy development methodologies which specify a single base element and several alloying elements have been unable to introduce new alloys at an acceptable rate for the increasingly specialised application requirements of modern technologies. An alternative alloy development strategy searches the previously unexplored central regions…
The key to the design and construction of advanced materials with tailored mechanical properties is nano- and micro-scale plasticity. Significant influence also exists in shaping the mechanical behavior of materials on small length scales.