Li, X.; Stein, F.: Coarsening of Lamellar Microstructures. 63rd Metal Research Colloquium organized by the Department for Metal Research and Materials Testing of the University Leoben, Lech am Arlberg, Austria (2017)
Luo, W.; Kirchlechner, C.; Dehm, G.; Stein, F.: Fracture Toughness of Hexagonal and Cubic NbCo2 Laves Phases. Nanobrücken 2017, European Nanomechanical Testing Conference, University of Manchester, Manchester, UK (2017)
Horiuchi, T.; Stein, F.; Abe, K.; Taniguchi, S.: Formation of Complex Intermetallic Phases from Supersaturated Co Solid Solution in a Co–3.9Nb Alloy. TMS 2017 Annual Meeting, San Diego, CA, USA (2017)
Stein, F.: Stability Competition between Laves Phase Polytypes. Escola Politécnica da Universidade de São Paulo, University Sao Paulo, Sao Paulo, Brazil (2016)
Stein, F.; Philips, N.: High-Temperature Phase Equilibria and Solidification Behaviour of Nb-rich Nb–Al–Fe Alloys. TOFA 2016, Discussion Meeting on Thermodynamics of Alloys, Santos, Brazil (2016)
Luo, W.; Kirchlechner, C.; Dehm, G.; Stein, F.: A New Method to Study the Composition Dependence of Mechanical Properties of Laves. MRS Fall Meeting 2016, Boston, MA, USA (2016)
Šlapáková, M.; Liebscher, C.; Kumar, S.; Stein, F.: Deformation Mechanism of Single Phase C14 Laves Phase NbFe2 Studied by TEM. MRS Fall Meeting 2016, Boston, MA, USA (2016)
Stein, F.; Horiuchi, T.: Discontinuous Precipitation of the Complex Intermetallic Phase Nb2Co7 from Supersaturated Co Solid Solution. Thermec 2016, Graz, Austria (2016)
Stein, F.; Luo, W.; Li, X.; Palm, M.: Diffusion couples as a "new" method for material synthesis. 61. Metallkunde-Kolloquium - Werkstoffforschung für Wirtschaft und Gesellschaft, Lech am Arlberg, Austria (2015)
Li, X.; Scherf, A.; Heilmaier, M.; Stein, F.: Coarsening Kinetics of Lamellar FeAl + FeAl2 Microstructures in Al-rich Fe–Al Alloys. Intermetallics 2015, Educational Center Kloster Banz, Bad Staffelstein, Germany (2015)
Li, X.; Scherf, A.; Janda, D.; Heilmaier, M.; Stein, F.: Two-Phase Binary Fe–Al Alloys with Fine-Scaled Lamellar Microstructure and the Effect of Ternary Additions on Microstructure, Stability, and Mechanical Behavior. 123HiMAT-2015, Advanced High-Temperature Materials Technology for Sustainable and Reliable Power Engineering, Sapporo, Japan (2015)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Statistical significance in materials science is a challenge that has been trying to overcome by miniaturization as in micropillar compression. However, this process is still limited to 4-5 tests per parameter variance, i.e. Size, orientation, grain size, composition, etc. as the process of fabricating pillars and testing has to be done one by one.…
The precipitation of intermetallic phases from a supersaturated Co(Nb) solid solution is studied in a cooperation with the Hokkaido University of Science, Sapporo.
Here the focus lies on investigating the temperature dependent deformation of material interfaces down to the individual microstructural length-scales, such as grain/phase boundaries or hetero-interfaces, to understand brittle-ductile transitions in deformation and the role of chemistry or crystallography on it.
This project (B06) is part of the SFB 1394 collaborative research centre (CRC), focused on structural and atomic complexity, defect phases and how they are related to material properties. The project started in January 2020 and has three important work packages: (i) fracture analysis of intermetallic phases, (ii) the relationship of fracture to…