Stratmann, M.; Hausbrand, R.; Rohwerder, M.: Novel Zinc Alloy Coatings: Tailored Semiconducting Oxides for Improved Corrosion Protection and Adhesion of Organic Coatings. 13th Asian Pacific Corrosion Control Conference, plenary lecture, Osaka, Japan (2003)
Hausbrand, R.; Stratmann, M.; Rohwerder, M.: Delaminationsschutz mit neuartigen Zinklegierungsschichten. API-Tagung, API-Preisvortrag, "Die Lackindustrie auf dem Wege zur sanften Chemie?", Rostock-Warnemünde, Germany (2003)
Rohwerder, M.; Hornung, E.; Yu, X.: Delamination of Polymer Coatings from Metal Substrates: Submicroscopic and Molecular Aspects. MRS Fall Meeting, Boston, MA, USA (2002)
Rohwerder, M.: The Effect of the Electrode Potential on Molecular Self-Assembly. Symposium on "Nano-scale materials and self assembling structures", Cykl sympozjów naukowych i imprez kulturalnych", Science and Art in Europe, Warsaw, Poland (2002)
Rohwerder, M.: Atomic and Molecular Order at Surfaces and Buried Interfaces and its Effect on Chemical and Mechanical Stability. MPG-UCSB Workshop on “Nanostructured and Functional Materials”, Naurod, Germany (2002)
Rohwerder, M.; Hausbrand, R.; Grundmeier, G.; Stratmann, M.: Study of electrochemical behaviour of MgZn2 with respect to its effect on the corrosion of Mg-containing zinc coatings on steel. ISE 2002, Düsseldorf, Germany (2002)
Rohwerder, M.; Stratmann, M.: Self-Assembly From Solution And Under Electrochemical Control Compared to Monolayer Growth By Vapor Phase Deposition. MRS Fall Meeting 2001, Boston, MA, USA (2001)
Rohwerder, M.; Stratmann, M.; de Boeck, A.; Ogle, K.; Rehnisch, O.; Reier, T.; Stellnberger, K.-H.; Steinbeck, C.; Wormuth, R.: Investigation of the delamination of polymer-coated zinc and steel surfaces with the scanning Kelvin probe in a climatic cycle test. GALVATECH 2001, Brussels, Belgium (2001)
Rohwerder, M.: The Scanning Kelvinprobe - A New Technique to Study the Stability of Metal/Polymer Bonds. Second International Symposium on Adhesion Aspects of Polymeric Coatings, Newark, NJ, USA (2000)
Rohwerder, M.; Stratmann, M.: The Scanning Kelvin Probe as a New Technique to Analyze Buried Interfaces. 196th meeting of the ECS, Honolulu, USA (1999)
Rohwerder, M.; Unger, M.; Lobnig, R. E.; Stratmann, M.: Role of ammonia sulfate particles in the corrosion of electronic devices. Eurocorr'99, Aachen, Germany (1999)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
This project will aim at developing MEMS based nanoforce sensors with capacitive sensing capabilities. The nanoforce sensors will be further incorporated with in situ SEM and TEM small scale testing systems, for allowing simultaneous visualization of the deformation process during mechanical tests
The utilization of Kelvin Probe (KP) techniques for spatially resolved high sensitivity measurement of hydrogen has been a major break-through for our work on hydrogen in materials. A relatively straight forward approach was hydrogen mapping for supporting research on hydrogen embrittlement that was successfully applied on different materials, and…
It is very challenging to simulate electron-transfer reactions under potential control within high-level electronic structure theory, e. g. to study electrochemical and electrocatalytic reaction mechanisms. We develop a novel method to sample the canonical NVTΦ or NpTΦ ensemble at constant electrode potential in ab initio molecular dynamics…
Photovoltaic materials have seen rapid development in the past decades, propelling the global transition towards a sustainable and CO2-free economy. Storing the day-time energy for night-time usage has become a major challenge to integrate sizeable solar farms into the electrical grid. Developing technologies to convert solar energy directly into…
Crystal Plasticity (CP) modeling [1] is a powerful and well established computational materials science tool to investigate mechanical structure–property relations in crystalline materials. It has been successfully applied to study diverse micromechanical phenomena ranging from strain hardening in single crystals to texture evolution in…