Raabe, D.: The role of texture and anisotropy in nano- and microscale materials mechanics. Keynote lecture at the Plasticity Conference 2004/2005, Hawai, USA (2005)
Raabe, D.: Using the Lattice Boltzmann Method for Multiscale Modeling in Materials Science and Engineering. Lecture at the Plasticity Conference 2004/2005, Hawai, USA (2005)
Raabe, D.; Romano, P.; Al-Sawalmih, A.; Sachs, C.; Servos, G.; Hartwig, H. G.: Microstructure and Mesostructure of the exoskeleton of the lobster homarus americanus. MRS Spring Meeting, San Francisco, CA, USA (2005)
Raabe, D.; Roters, F.: How do 10^10 crystals co-deform. "Weitab vom Hooksechen Gesetz -- Moderne Ansätze und Ingenieurpraxis großer inelastischer deformation metallischer Werkstoffe'' Symposium der Akademie der Wissenschaften und der Literatur, Mainz, Germany (2004)
Raabe, D.; Roters, F.: Physically-Based Large-Scale Texture and Anisotropy Simulation for Automotive Sheet Forming. TMS Fall meeting, New Orleans, LA, USA (2004)
Konrad, J.; Raabe, D.; Zaefferer, S.: Investigation of Nucleation Mechanisms of Recrystallization in Warm Rolled Fe3Al Base Alloys. 2nd International Conference on Recrystallization and Grain Growth, Annecy, France (2004)
Raabe, D.: Recrystallization in Polymers – Experiments and Simulations. Invited Keynote lecture, 2nd International Conference on Recrystallization and Grain Growth, REX&GG 2004 Annecy, Annecy, France (2004)
Raabe, D.: Textures and Micromechanics in Experiment and Theory on Metals and Semi-Crystalline Polymers. Joint Colloquium of the University of Vienna and Technical University of Vienna, Vienna (2004)
Raabe, D.: Simulations and Experiments on Micromechanics in Metals and Polymers. Colloquium lecture at the Department for Theoretical Physics, University of Paderborn (2004)
Konrad, J.; Raabe, D.; Zaefferer, S.: Texturentwicklung beim Warmwalzen und bei der Rekristallisation von Fe3Al-Basislegierungen. Sitzung des DFG Fachausschuss Intermetallische Phasen, MPIE, Düsseldorf, Germany (2004)
Konrad, J.; Zaefferer, S.; Schneider, A.; Raabe, D.; Frommeyer, G.: Texturentwicklung beim Warmwalzen und bei der Rekristallisation von Fe3Al-Basislegierungen. Treffen des Fachausschusses Intermetallische Phasen, MPI Eisenforschung, Düsseldorf (2004)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
A high degree of configurational entropy is a key underlying assumption of many high entropy alloys (HEAs). However, for the vast majority of HEAs very little is known about the degree of short-range chemical order as well as potential decomposition. Recent studies for some prototypical face-centered cubic (fcc) HEAs such as CrCoNi showed that…
Electron channelling contrast imaging (ECCI) is a powerful technique for observation of extended crystal lattice defects (e.g. dislocations, stacking faults) with almost transmission electron microscopy (TEM) like appearance but on bulk samples in the scanning electron microscope (SEM).
About 90% of all mechanical service failures are caused by fatigue. Avoiding fatigue failure requires addressing the wide knowledge gap regarding the micromechanical processes governing damage under cyclic loading, which may be fundamentally different from that under static loading. This is particularly true for deformation-induced martensitic…
We simulate the ionization contrast in field ion microscopy arising from the electronic structure of the imaged surface. For this DFT calculations of the electrified surface are combined with the Tersoff-Hamann approximation to electron tunneling. The approach allows to explain the chemical contrast observed for NiRe alloys.
Decarbonisation of the steel production to a hydrogen-based metallurgy is one of the key steps towards a sustainable economy. While still at the beginning of this transformation process, with multiple possible processing routes on different technological readiness, we conduct research into the related fundamental scientific questions at the MPIE.
Within this project, we will use an infra-red laser beam source based selective powder melting to fabricate copper alloy (CuCrZr) architectures. The focus will be on identifying the process parameter-microstructure-mechanical property relationships in 3-dimensional CuCrZr alloy lattice architectures, under both quasi-static and dynamic loading…