Raabe, D.: Crystal Mechanics of Metals and Biological Matter. Colloquium lecture at Max Planck Institute for Colloids and Interfaces, Golm/Potsdam (2007)
Nikolov, S.; Sachs, C.; Fabritius, H.; Raabe, D.: Microstructure and micromechanics of hard biological tissues: From lobster cuticle to human bone. Seminar talk at Université Catholique de Louvain, Dept. of Applied Sciences, Louvain, Belgium (2007)
Fabritius, H.; Sachs, C.; Raabe, D.: Influence of structural principles on the mechanics and efficiency of different biological materials using lobster cuticle as a model material. Second International Conference on Mechanics of Biomaterials & Tissues (ICMBT 2007), Lihue, HI, USA (2007)
Ma, A.; Roters, F.; Raabe, D.: Introducing the Effect of Grain Boundaries into Crystal Plasticity FEM Using a Non Local Dislocation Density Based Constitutive Model. Theory and Application to FCC Bi-Crystals. Euromech Colloquium 463, MPI für Eisenforschung GmbH, Düsseldorf, Germany (2007)
Bieler, T. R.; Roters, F.; Raabe, D.: Computational modeling of TiAl microstructures which developed microcracked grain boundaries. Bundesanstalt für Materialforschung und -prüfung (BAM), Berlin, Germany (2006)
Bieler, T. R.; Roters, F.; Raabe, D.: Computational modeling of TiAl microstructures which developed microcracked grain boundaries. GKSS Research Center, Geesthacht, Germany (2006)
Raabe, D.; Zaafarani, N.; Roters, F.: 3D Study on Texture and Size Effects Below Nanoindents in Cu Single Crystals Using 3D FIB-EBSD and Crystal Plasticity Finite Element Simulations. MRS Fall Conference, Boston, MA, USA (2006)
Bastos, A.; Zaefferer, S.; Raabe, D.: 3D EBSD Characterization of a Nanocrystalline NiCo Alloy by use of a High-resolution Field Emission SEM-EBSD Coupled with Serial Sectioning in a Focused Ion Beam Microscope (FIB). MRS Fall Conference, Boston, MA, USA (2006)
Raabe, D.; Al-Sawalmih, A.; Raue, L.; Klein, H.; Fabritius, H.: Texture of Alpha-chitin and Calcite as a Microscopic Composite Design and Macroscopic Biological Construction Principle of the Exoskeleton of the Lobster Homarus americanus. MRS Fall Conference, Boston, MA, USA (2006)
Sachs, C.; Fabritius, H.; Raabe, D.: Mechanical Properties of the Lobster Cuticle Investigated by Bending Tests and Digital Image Correlation. MRS Fall Conference, Boston, MA, USA (2006)
Godara, A.; Raabe, D.; Green, S.: The influence of sterilization processes on the micromechanical properties of carbon fiber reinforced PEEK composites for bone-implant applications. 2006 MRS Fall Conference, Boston, MA, USA (2006)
Ohsaki, S.; Raabe, D.; Hono, K.: On the Mechanism of Mechanical Mixing and Deformation-induced Amorphization in Heavily Drawn Cu-Nb-Ag in situ Composite Wires. MRS Fall Conference, Boston, MA, USA (2006)
Raabe, D.; Sander, B.; Friák, M.; Neugebauer, J.: Bottom up design of novel Titanium-based biomaterials through the combination of ab-initio simulations and experimental methods. Materials Research Society fall meeting, Boston, MA, USA (2006)
Sandim, M.; Stamopoulos, D.; Sandim, H.; Ghivelder, L.; Thilly, L.; Vidal, V.; Lecouturier, F.; Raabe, D.: Strain Effects on the Magnetic Properties of Cu-Nb Nanofilamentary Composites. MRS Fall Conference, Boston, MA, USA (2006)
Bieler, T. R.; Crimp, M. A.; Roters, F.; Raabe, D.: Computational modeling of TiAl microstructures which developed microcracked grain boundaries. Institut für Metallkunde und Metallphysik RWTH-Aachen, Aachen, Germany (2006)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The aim of the work is to develop instrumentation, methodology and protocols to extract the dynamic strength and hardness of micro-/nano- scale materials at high strain rates using an in situ nanomechanical tester capable of indentation up to constant strain rates of up to 100000 s−1.
In this project, we investigate a high angle grain boundary in elemental copper on the atomic scale which shows an alternating pattern of two different grain boundary phases. This work provides unprecedented views into the intrinsic mechanisms of GB phase transitions in simple elemental metals and opens entirely novel possibilities to kinetically engineer interfacial properties.
Within this project, we will use an infra-red laser beam source based selective powder melting to fabricate copper alloy (CuCrZr) architectures. The focus will be on identifying the process parameter-microstructure-mechanical property relationships in 3-dimensional CuCrZr alloy lattice architectures, under both quasi-static and dynamic loading…
Copper is widely used in micro- and nanoelectronics devices as interconnects and conductive layers due to good electric and mechanical properties. But especially the mechanical properties degrade significantly at elevated temperatures during operating conditions due to segregation of contamination elements to the grain boundaries where they cause…