Krieg, R.; Vimalanandan, A.; Rohwerder, M.; Theirry, D.; Le Bozec, N.: Corrosion Performance of Zinc Magnesium Aluminium Coated steel: Discussion of fundamental mechanisms. 224th ECS Meeting, San Francisco, CA, USA (2013)
Tran, T. H.; Vimalanandan, A.; Rohwerder, M.: Electrodeposited zinc-nanocomposite coatings for smart corrosion protection. EUROCORR 2013, the European Corrosion Congress, “For a blue sky”, Estoril, Portugal (2013)
Lv, L. P.; Zhao, Y.; Vimalanandan, A.; Rohwerder, M.; Landfester, K.; Crespy, D.: Redox-responsive release of self-healing agent for anticorrosion. International Conference on Self-Healing Materials, Ghent, Belgium (2013)
Tran, T. H.; Vimalanandan, A.; Rohwerder, M.: Electrodeposited Zinc-Nanocomposite-Coatings for Smart Corrosion Protection. Gordon Research Conference Corrosion-Aqueous, New London, NH, USA (2012)
Vimalanandan, A.; Altin, A.; Tran, T. H.; Rohwerder, M.: Conducting Polymers for Corrosion Protection - Raspberry like shaped ICP “pigments”. Gordon Research Conference Corrosion-Aqueous, New London, NH, USA (2012)
Khan, T. R.; Vimalanandan, A.; Rohwerder, M.; Marlow, F.: Electrodeposition of Zinc-Silica Coatings for Smart Corrosion Protection. EUROCORR 2011, the European Corrosion Congress “Developing Solutions For The Global Challenge”, Stockholm, Sweden (2011)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Oxides find broad applications as catalysts or in electronic components, however are generally brittle materials where dislocations are difficult to activate in the covalent rigid lattice. Here, the link between plasticity and fracture is critical for wide-scale application of functional oxide materials.
The fracture toughness of AuXSnY intermetallic compounds is measured as it is crucial for the reliability of electronic chips in industrial applications.
Within this project we investigate chemical fluctuations at the nanometre scale in polycrystalline Cu(In,Ga)Se2 and CuInS2 thin-flims used as absorber material in solar cells.
This project aims to investigate the dynamic hardness of B2-iron aluminides at high strain rates using an in situ nanomechanical tester capable of indentation up to constant strain rates of up to 100000 s−1 and study the microstructure evolution across strain rate range.