Kusampudi, N.; Diehl, M.: Inverse design of dual-phase steel microstructures using generative machine learning model and Bayesian optimization. International Journal of Plasticity 171, 103776 (2023)
Nascimento, A.; Roongta, S.; Diehl, M.; Beyerlein, I. J.: A machine learning model to predict yield surfaces from crystal plasticity simulations. International Journal of Plasticity 161, 103507 (2023)
Shah, V.; Sedighiani, K.; Van Dokkum, J. S.; Bos, C.; Roters, F.; Diehl, M.: Coupling crystal plasticity and cellular automaton models to study meta- dynamic recrystallization during hot rolling at high strain rates. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing 849, 143471 (2022)
Fujita, N.; Yasuda, K.; Ishikawa, N.; Diehl, M.; Roters, F.; Raabe, D.: Characterizing Localized Microstructural Deformation of Multiphase Steel by Crystal Plasticity Simulation with Multi-Constitutive Law. Journal of the Japan Society for Technology of Plasticity 63 (732), pp. 1 - 8 (2022)
Sedighiani, K.; Diehl, M.; Traka, K.; Roters, F.; Sietsma, J.; Raabe, D.: An efficient and robust approach to determine material parameters of crystal plasticity constitutive laws from macro-scale stress-strain curves. International Journal of Plasticity 134, 102779 (2020)
Han, F.; Diehl, M.; Roters, F.; Raabe, D.: Using spectral-based representative volume element crystal plasticity simulations to predict yield surface evolution during large scale forming simulations. Journal of Materials Processing Technology 277, 116449 (2020)
Diehl, M.; Niehuesbernd, J.; Bruder, E.: Quantifying the Contribution of Crystallographic Texture and Grain Morphology on the Elastic and Plastic Anisotropy of bcc Steel. Metals 9 (12), 1252 (2019)
Diehl, M.; Kühbach, M.: Coupled experimental-computational analysis of primary static recrystallization in low carbon steel. Modelling and Simulation in Materials Science and Engineering 28 (1), 014001 (2019)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Many important phenomena occurring in polycrystalline materials under large plastic strain, like microstructure, deformation localization and in-grain texture evolution can be predicted by high-resolution modeling of crystals. Unfortunately, the simulation mesh gets distorted during the deformation because of the heterogeneity of the plastic…
About 90% of all mechanical service failures are caused by fatigue. Avoiding fatigue failure requires addressing the wide knowledge gap regarding the micromechanical processes governing damage under cyclic loading, which may be fundamentally different from that under static loading. This is particularly true for deformation-induced martensitic…
With the support of DFG, in this project the interaction of H with mechanical, chemical and electrochemical properties in ferritic Fe-based alloys is investigated by the means of in-situ nanoindentation, which can characterize the mechanical behavior of independent features within a material upon the simultaneous charge of H.
The full potential of energy materials can only be exploited if the interplay between mechanics and chemistry at the interfaces is well known. This leads to more sustainable and efficient energy solutions.