Yao, Y.; Euesden, R.; Curd, M. E.; Liu, C.; Garner, A.; Burnett, T. L.; Shanthraj, P.; Prangnell, P.: Effect of cooling rate on the composition and chemical heterogeneity of quench-induced grain boundary e-phase precipitates in 7xxx aluminium alloys. Acta Materialia 262, 119443 (2024)
Shanthraj, P.; Liu, C.; Akbarian, A.; Svendsen, B.; Raabe, D.: Multi-component chemo-mechanics based on transport relations for the chemical potential. Computer Methods in Applied Mechanics and Engineering 365, 113029 (2020)
Lahiri, A.; Shanthraj, P.; Roters, F.: Understanding the mechanisms of electroplasticity from a crystal plasticity perspective. Modelling and Simulation in Materials Science and Engineering 27, 085006 (2019)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Within this project we investigate chemical fluctuations at the nanometre scale in polycrystalline Cu(In,Ga)Se2 and CuInS2 thin-flims used as absorber material in solar cells.
This project aims to investigate the dynamic hardness of B2-iron aluminides at high strain rates using an in situ nanomechanical tester capable of indentation up to constant strain rates of up to 100000 s−1 and study the microstructure evolution across strain rate range.
This project deals with the phase quantification by nanoindentation and electron back scattered diffraction (EBSD), as well as a detailed analysis of the micromechanical compression behaviour, to understand deformation processes within an industrial produced complex bainitic microstructure.
Within this project, we will use a green laser beam source based selective melting to fabricate full dense copper architectures. The focus will be on identifying the process parameter-microstructure-mechanical property relationships in 3-dimensional copper lattice architectures, under both quasi-static and dynamic loading conditions.