Rao, Z.; Bajpai, A.; Zhang, H.: Active learning strategies for the design of sustainable alloys. Philosophical Transactions of the Royal Society A 382 (2284), 20230242 (2024)
Rao, Z.; Li, Y.; Zhang, H.; Colnaghi, T.; Marek, A.; Rampp, M.; Gault, B.: Direct recognition of crystal structures via three-dimensional convolutional neural networks with high accuracy and tolerance to random displacements and missing atoms. Scripta Materialia 234, 115542 (2023)
Pyczak, F.; Liang, Z.; Neumeier, S.; Rao, Z.: Stability and Physical Properties of the L12-γ' Phase in the CoNiAlTi-System. Metallurgical and Materials Transactions A 54 (5), pp. 1661 - 1670 (2023)
Zhu, Z.; Ng, F. L.; Seet, H. L.; Lu, W.; Liebscher, C.; Rao, Z.; Raabe, D.; Nai, S. M. L.: Superior mechanical properties of a selective-laser-melted AlZnMgCuScZr alloy enabled by a tunable hierarchical microstructure and dual-nanoprecipitation. Materials Today 52, pp. 90 - 101 (2022)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Adding 30 to 50 at.% aluminum to iron results in single-phase alloys with an ordered bcc-based crystal structure, so-called B2-ordered FeAl. Within the extended composition range of this intermetallic phase, the mechanical behavior varies in a very particular way.
The mechanical properties of bulk CrFeCoNi compositionally complex alloys (CCA) or high entropy alloys (HEA) are widely studied in literature [1]. Notably, these alloys show mechanical properties similar to the well studied quinary CrMnFeCoNi [2] . Nevertheless, little is known about the deformation mechanisms and the thermal behavior of these…
In this project, the effects of scratch-induced deformation on the hydrogen embrittlement susceptibility in pearlite is investigated by in-situ nanoscratch test during hydrogen charging, and atomic scale characterization. This project aims at revealing the interaction mechanism between hydrogen and scratch-induced deformation in pearlite.
Efficient harvesting of sunlight and (photo-)electrochemical conversion into solar fuels is an emerging energy technology with enormous promise. Such emerging technologies depend critically on materials systems, in which the integration of dissimilar components and the internal interfaces that arise between them determine the functionality.