Ostertag, L. M.; Utzig, T.; Klinger, C.; Valtiner, M.: Tether-Length Dependence of Bias in Equilibrium Free-Energy Estimates for Surface-to-Molecule Unbinding Experiments. Langmuir 34 (3), pp. 766 - 772 (2018)
Stock, P.; Utzig, T.; Valtiner, M.: Soft matter interactions at the molecular scale: interaction forces and energies between single hydrophobic model peptides. Physical Chemistry Chemical Physics 19 (6), pp. 4216 - 4221 (2017)
Utzig, T.; Stock, P.; Valtiner, M.: Resolving Non-Specific and Specific Adhesive Interactions of Catechols at Solid/Liquid Interfaces at the Molecular Scale. Angewandte Chemie International Edition in English 55, pp. 9524 - 9528 (2016)
Utzig, T.; Stock, P.; Valtiner, M.: Resolving Non-Specific and Specific Adhesive Interactions of Catechols at Solid/Liquid Interfaces at the Molecular Scale. Angewandte Chemie 128, pp. 9676 - 9680 (2016)
Utzig, T.; Stock, P.; Raman, S.; Valtiner, M.: Targeted Tuning of Interactive Forces by Engineering of Molecular Bonds in Series and Parallel Using Peptide-Based Adhesives. Langmuir 31 (40), pp. 11051 - 11057 (2015)
Stock, P.; Utzig, T.; Valtiner, M.: Direct and quantitative AFM measurements of the concentration and temperature dependence of the hydrophobic force law at nanoscopic contacts. Journal of Colloid and Interface Science 446, pp. 244 - 251 (2015)
Utzig, T.; Raman, S.; Valtiner, M.: Scaling from Single Molecule to Macroscopic Adhesion at Polymer/Metal Interfaces. Langmuir 31 (9), pp. 2722 - 2729 (2015)
Hu, Q.; Cheng, H.-W.; Stock, P.; Utzig, T.; Shrestha, B. R.; Valtiner, M.: Elucidating the structure of solid/electrolyte interfaces - Force probe experiments at hydrophilic, hydrophobic and electrified aqueous as well as ionic liquid|electrode interfaces. Bunsenmagazin 2, pp. 49 - 55 (2015)
Cheng, H.-W.; Utzig, T.; Valtiner, M.: Using a Surface-Forces-Apparatus to measure force distance profiles across confined ionic liquids. Application Note – Spectrographs (Andor) (2014)
Utzig, T.: A contribution to understanding interfacial adhesion based on molecular level knowledge. Dissertation, Fakultät für Maschinenbau, Ruhr-Universität Bochum, Bochum, Germany (2016)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Oxides find broad applications as catalysts or in electronic components, however are generally brittle materials where dislocations are difficult to activate in the covalent rigid lattice. Here, the link between plasticity and fracture is critical for wide-scale application of functional oxide materials.
The fracture toughness of AuXSnY intermetallic compounds is measured as it is crucial for the reliability of electronic chips in industrial applications.
Within this project we investigate chemical fluctuations at the nanometre scale in polycrystalline Cu(In,Ga)Se2 and CuInS2 thin-flims used as absorber material in solar cells.
This project aims to investigate the dynamic hardness of B2-iron aluminides at high strain rates using an in situ nanomechanical tester capable of indentation up to constant strain rates of up to 100000 s−1 and study the microstructure evolution across strain rate range.