Asteman, H.; Spiegel, M.: Investigation of the chlorine attack caused by HCl (g) on oxide scales formed on pre-oxidized pure metals and commercial alloys. EUROCORR 2006, Maastricht, The Netherlands (2006)
Asteman, H.; Lill, K. A.; Hassel, A. W.; Spiegel, M.: Preparation and electrochemical characterisation by SDC of thin Cr2O3, Fe2O3 and (Fe,Cr)2O3 films, thermally grown on Pt-substrates. 6th Int. Symposium on Electrochemical Micro and Nanosystem Technologies, Düsseldorf, Germany (2006)
Spiegel, M.: Laboruntersuchungen zur Korrosion in thermischen Anlagen. Fachtagung: Werkstoffe und Verfahren der Energietechnik, Sulzbach-Rosenberg, Germany (2006)
Spiegel, M.: Einfluss der Veränderungen von gasförmigem Chloranteil und Rohrwandtemperaturen auf die Korrosion unter Belägen. VDI Wissensforum: Beläge und Korrosion in Großfeuerungsanlagen, Hannover, Germany (2006)
Spiegel, M.; Stein, F.; Pöter, B.: Initial Stages of Oxide Growth on Fe–Al Alloys. 3rd Disc.Meeting on the Development of Innovative Iron Aluminium Alloys, Mettmann-Düsseldorf, Germany (2006)
Asteman, H.; Spiegel, M.: Investigation of the chemical breakdown of protective oxides formed on pre-oxidized alloys caused by HCl (g) and H2O (g). Eurocorr 2005, Lisbon, Portugal (2005)
Asteman, H.; Lill, K.; Hassel, A. W.; Spiegel, M.: Local Measurements of the Semi conducting Properties of alpha-Fe2O3 and Cr2O3 Films by Impedance Measurement using the Scanning Droplet Cell Technique. 9th International Symposium on the Passivity of Metals and Semiconductors, Paris, France (2005)
Park, E.; Spiegel, M.: Development and Composition of the High Temperature Oxide Film Grown on Fe-15Cr during Annealing. Passivity 9, Paris, France (2005)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In this project, we aim to design novel NiCoCr-based medium entropy alloys (MEAs) and further enhance their mechanical properties by tuning the multiscale heterogeneous composite structures. This is being achieved by alloying of varying elements in the NiCoCr matrix and appropriate thermal-mechanical processing.
“Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…
The Ni- and Co-based γ/γ’ superalloys are famous for their excellent high-temperature mechanical properties that result from their fine-scaled coherent microstructure of L12-ordered precipitates (γ’ phase) in an fcc solid solution matrix (γ phase). The only binary Co-based system showing this special type of microstructure is the Co-Ti system…
In this project, we employ atomistic computer simulations to study grain boundaries. Primarily, molecular dynamics simulations are used to explore their energetics and mobility in Cu- and Al-based systems in close collaboration with experimental works in the GB-CORRELATE project.