Spiegel, M.: Corrosion protection and electronic conductivity: Spinel forming stainless steels as CCC for MCFC. Gordon Research Conference on High Temperature Corrosion, New London, NH, USA (2003)
Parezanovic, I.; Spiegel, M.: Surface modification of different Fe–Si and Fe–Mn alloys by oxidation/reduction treatments. Eurocorr 2003, Budapest, Hungary (2003)
Li, Y. S.; Spiegel, M.: Degradation performance of Al-containing alloys and intermetallics by molten ZnCl2/KCl. Corrosion Science in the 21th Century, UMIST Manchester, UK (2003)
Spiegel, M.: Factors affecting the high temperature corrosion resistance of coatings in waste fired plant. Corrosion Science in the 21th Century, UMIST Manchester, UK (2003)
Spiegel, M.; Parezanovic, I.; Strauch, E.; Grabke, H. J.: Spinel forming stainless steels as possible current collector materials for molten carbon ate fuel cells. Fuel Cells Science and Technology, Amsterdam, The Netherlands (2002)
Spiegel, M.; Warnecke, R.: Korrosion hochlegierter Stähle und nichtmetallischer Werkstoffe unter Müll verbrennungsbedingungen. VDI Fachtagung: ‚Korrosion in energieerzeugenden Anlagen’, Würzburg (2002)
Spiegel, M.; Zahs, A.; Grabke, H. J.: Fundamental aspects of chlorine induced corrosion in power plants. Invited lecture on the Workshop: ‘Life cycle issues in advanced energy systems’, Woburn, UK (2002)
Genchev, G.; Cox, K.; Sarfraz, A.; Bosch, C.; Spiegel, M.; Erbe, A.: Sour corrosion – Investigation of anodic iron sulfide layer growth in saturated H2S saline solutions. Gordon Research Conference-Aqueous Corrosion, New London, NH, USA (2014)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
About 90% of all mechanical service failures are caused by fatigue. Avoiding fatigue failure requires addressing the wide knowledge gap regarding the micromechanical processes governing damage under cyclic loading, which may be fundamentally different from that under static loading. This is particularly true for deformation-induced martensitic…
With the support of DFG, in this project the interaction of H with mechanical, chemical and electrochemical properties in ferritic Fe-based alloys is investigated by the means of in-situ nanoindentation, which can characterize the mechanical behavior of independent features within a material upon the simultaneous charge of H.
The full potential of energy materials can only be exploited if the interplay between mechanics and chemistry at the interfaces is well known. This leads to more sustainable and efficient energy solutions.
This project aims to correlate the localised electrical properties of ceramic materials and the defects present within their microstructure. A systematic approach has been developed to create crack-free deformation in oxides through nanoindentation, while the localised defects are probed in-situ SEM to study the electronic properties. A coupling…