Biedermann, P. U.; Flechtner, K.-D.: Towards a Thermodynamic Theory of Electrochemical Reactions in Aqueous Media. A DFT Study of the Intermediates of Oxygen Reduction. 46th Symposium on Theoretical Chemistry, STC2010, Münster, Germany (2010)
Biedermann, P. U.; Flechtner, K.-D.: Theoretical Insights into the Mechanism of the Oxygen Reduction Reaction. Electrochemistry 2010, Ruhr-Universität Bochum, Bochum, Germany (2010)
Nayak, S.; Biedermann, P. U.; Erbe, A.: Spectroscopic Investigation of the Oxygen Reduction Reaction (ORR) on Semiconductor Surfaces. Electrochemistry 2010 - From microscopic understanding to global impact, Bochum, Germany (2010)
Nayak, S.; Biedermann, P. U.; Erbe, A.: Electrochemical oxygen reduction on semiconductor electrodes. 109th Annual meeting of the German Bunsen Society of Physical Chemistry (Bunsentagung), Bielefeld, Germany (2010)
Hamou, R. F.; Biedermann, P. U.; Rohwerder, M.; Blumenau, A. T.: FEM Simulation of the Scanning Electrochemical Potential Microscopy (SECPM). 2nd IMPRS-SurMat Workshop in Surface and Interface Engineering in Advanced Materials, Ruhr-Universität Bochum, Bochum, Germany (2008)
Torres, E.; Biedermann, P. U.; Blumenau, A. T.: A DFT study of Alkanethiol adsorption sites on Au(111) surfaces. 2nd IMPRS-SurMat Workshop in Surface and Interface Engineering in Advanced Materials, Ruhr-Universität Bochum, Bochum, Germany (2008)
Biedermann, P. U.; Torres, E.; Laaboudi, L.; Isik-Uppenkamp, S.; Rohwerder, M.; Blumenau, A. T.: Cathodic Delamination by a Combined Computational and Experimental Approach: The Aklylthiol/Gold Model System. Multiscale Material Modeling of Condensed Matter, MMM2007, St. Feliu de Guixols, Spain (2007)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
This ERC-funded project aims at developing an experimentally validated multiscale modelling framework for the prediction of fracture toughness of metals.
In this project, links are being established between local chemical variation and the mechanical response of laser-processed metallic alloys and advanced materials.
The unpredictable failure mechanism of White Etching Crack (WEC) formation in bearing steels urgently demands in-depth understanding of the underlying mechanisms in the microstructure. The first breakthrough was achieved by relating the formation of White Etching Areas (WEAs) to successive WEC movement.
The atomic arrangements in extended planar defects in different types of Laves phases is studied by high-resolution scanning transmission electron microscopy. To understand the role of such defect phases for hydrogen storage, their interaction with hydrogen will be investigated.