Welsch, E. D.; Haghighat, S. M. H.; Gutiérrez-Urrutia, I.; Raabe, D.: Investigation of nano-sized kappa carbide distribution in advanced austenitic lightweight high-Mn steels by coupled TEM and DDD simulations: Strengthening and dislocation-based mechanisms. 2nd International Conference on High Manganese Steels, Aachen, Germany (2014)
Haghighat, S. M. H.; Eggeler, G. F.; Raabe, D.: Mesoscale modelling of the influence of loading conditions on the dislocation mobility and creep process in single crystal Ni base superalloys. KTH Stockholm-Sweden, Stockholm, Sweden (2014)
Haghighat, S. M. H.; Eggeler, G.; Raabe, D.: Discrete Dislocation Dynamics Study of Creep Anisotropy in Single Crystal Ni Base Superalloys. MRS Fall Meeting, Bosten, USA (2013)
Haghighat, S. M. H.; Schäublin, R.; Raabe, D.: Molecular Dynamics Study of Obstacle Induced Hardening; From Nano-Sized Defects to Binary Junction. MRS Fall Meeting, Bosten, MA, USA (2013)
Haghighat, S. M. H.; Schäublin, R.; Raabe, D.: Atomistic study of forest hardening through binary dislocation junction in bcc-iron. 2013 MRS Spring Meeting, San Francisco, CA, USA (2013)
Haghighat, S. M. H.; Eggeler, G.; Raabe, D.: Discrete dislocation dynamics modeling of loading orientation effect on the low stress creep of single crystal Ni base superalloys. Intermetallics 2013, Bad Staffelstein, Germany (2013)
Haghighat, S. M. H.; Eggeler, G.; Raabe, D.: Primary creep of Ni base supealloys used in hot gas turbine blades. Alstom Company, Baden, Switzerland (2012)
Haghighat, S. M. H.; Eggeler, G.; Raabe, D.: Dislocation dynamics modeling of the glide-climb mobility of a ½ a0<110>{111} dislocation in interaction with γ’ precipitate in Ni-based superalloy. 4th International Conference on Dislocations, Budapest, Hungary (2012)
Haghighat, S. M. H.; Schäublin, R.: Perspective of multiscale simulation approach in the development of novel materials. Tarbiat Modares University, Tehran, Iran (2012)
Haghighat, S. M. H.; Schäublin, R.: Atomistic simulation and transmission electron microscopy of obstacle strengthening in iron. Sahand University of Technology, Tabri, Iran (2012)
Haghighat, S. M. H.; von Pezold, J.; Neugebauer, J.; Raabe, D.: Effect of local stress state on the glide of ½a₀<111> screw dislocation in bcc-Fe. 1st Austrian-German Workshop on Computational Materials Design, Kramsach, Austria (2012)
Schäublin, J.; Haghighat, S. M. H.: Simulation of the screw dislocation mobility in Fe by molecular dynamics. E-MRS Spring Meeting, Nice, France (2011)
Haghighat, S. M. H.; Schäublin, R.: Dislocations mechanisms in bcc-Fe; from atomistic to TEM observation. Workshop on ab initio Description of Iron and Steel: Mechanical properties, Ringberg Castle, Germany (2010)
Haghighat, S. M. H.; Reed, R. C.; Raabe, D.: Modeling of dislocation mechanisms and the influence of the γ/γ´lattice misfit on the dislocation assisted creep of high temperature Ni-base superalloys. 7th International Conference on Multiscale Materials Modeling , Berkeley, CA, USA (2014)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Adding 30 to 50 at.% aluminum to iron results in single-phase alloys with an ordered bcc-based crystal structure, so-called B2-ordered FeAl. Within the extended composition range of this intermetallic phase, the mechanical behavior varies in a very particular way.
The mechanical properties of bulk CrFeCoNi compositionally complex alloys (CCA) or high entropy alloys (HEA) are widely studied in literature [1]. Notably, these alloys show mechanical properties similar to the well studied quinary CrMnFeCoNi [2] . Nevertheless, little is known about the deformation mechanisms and the thermal behavior of these…
In this project, the effects of scratch-induced deformation on the hydrogen embrittlement susceptibility in pearlite is investigated by in-situ nanoscratch test during hydrogen charging, and atomic scale characterization. This project aims at revealing the interaction mechanism between hydrogen and scratch-induced deformation in pearlite.
Efficient harvesting of sunlight and (photo-)electrochemical conversion into solar fuels is an emerging energy technology with enormous promise. Such emerging technologies depend critically on materials systems, in which the integration of dissimilar components and the internal interfaces that arise between them determine the functionality.