Hieke, S. W.; Breitbach, B.; Dehm, G.; Scheu, C.: Microstructural evolution and solid state dewetting of epitaxial Al thin films on sapphire (α-Al2O3). Acta Materialia 133, pp. 356 - 366 (2017)
Malyar, N.; Micha, J.-S.; Dehm, G.; Kirchlechner, C.: Dislocation-twin boundary interaction in small scale Cu bi-crystals loaded in different crystallographic directions. Acta Materialia 129, pp. 91 - 97 (2017)
Peter, N. J.; Liebscher, C.; Kirchlechner, C.; Dehm, G.: Beam-induced atomic migration at Ag-containing nanofacets at an asymmetric Cu grain boundary. Journal of Materials Research 32 (5), pp. 968 - 982 (2017)
Harzer, T. P.; Duarte, M. J.; Dehm, G.: In–situ TEM study of diffusion kinetics and electron irradiation effects on the Cr phase separation of a nanocrystalline Cu–4 at.% Cr thin film alloy. Journal of Alloys and Compounds 695, pp. 1583 - 1590 (2017)
Harzer, T. P.; Dehm, G.: Stability, phase separation and oxidation of a supersaturated nanocrystalline Cu–33 at.% Cr thin film alloy. Thin Solid Films 623, pp. 48 - 58 (2017)
Brinckmann, S.; Kirchlechner, C.; Dehm, G.: Stress intensity factor dependence on anisotropy and geometry during micro-fracture experiments. Scripta Materialia 127, pp. 76 - 78 (2017)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Hydrogen embrittlement (HE) is one of the most dangerous embrittlement problems in metallic materials and advanced high-strength steels (AHSS) are particularly prone to HE with the presence of only a few parts-per-million of H. However, the HE mechanisms in these materials remain elusive, especially for the lightweight steels where the composition…
Conventional alloy development methodologies which specify a single base element and several alloying elements have been unable to introduce new alloys at an acceptable rate for the increasingly specialised application requirements of modern technologies. An alternative alloy development strategy searches the previously unexplored central regions…
The key to the design and construction of advanced materials with tailored mechanical properties is nano- and micro-scale plasticity. Significant influence also exists in shaping the mechanical behavior of materials on small length scales.