Best, J. P.: Linking structure to fracture through small-scale mechanical analyses of a laser-processed bulk metallic glass. Materials Science Engineering MSE-2020 (Online), Darmstadt, Germany (2020)
Best, J. P.: Nano-/Micromechanics of Materials: A focus on laser-processed BMGs. Deutsches Zentrum für Luft- und Raumfahrt (DLR) Seminar Series, online, Köln, Germany (2020)
Best, J. P.: Small-scale mechanics at the Max-Planck-Institute in Düsseldorf: An overview. Oxford Materials Group Seminar Series, online, Oxford, UK (2020)
Kanjilal, A.; Best, J. P.; Dehm, G.: Investigation of Intermetallic-Mg interface strength using in-situ microshear testing. Nanomechanical Testing in Materials Research and Development IX, Sicily, Italy (2024)
Lee, J. S.; Dehm, G.; Best, J. P.; Stein, F.: Mechanical properties of B2 FeAl as a function of composition using targeted nanoindentation on diffusion couples. ECI Conference on Nanomechanical Testing in Materials Research and Development, Giardini Naxos, Messina (Sicily), Italy (2024)
Bhat, M. K.; Frommeyer, L.; Prithiv, T. S.; Dehm, G.; Best, J. P.: Using small-scale mechanics to probe the origins of segregation-induced strengthening. Nanomechanical Testing in Materials Research and Development VIII, Split, Croatia (2022)
Rehman, U.; Tian, C.; Stein, F.; Best, J. P.; Dehm, G.: Fracture Toughness of the Intermetallic C15 Al2Ca Laves Phase Determined using a Micropillar Splitting Technique. Intermetallics 2021, Educational Center Kloster Banz, Bad Staffelstein, Germany (2021)
Brognara, A.; Best, J. P.; Djemia, P.; Faurie, D.; Ghidelli, M.; Dehm, G.: On the mechanical properties and thermal stability of ZrxCu100-x thin film metallic glasses with different compositions. Nanobrücken 2021 - Nanomechanical Testing Conference virtual event, Düsseldorf, Germany (2021)
Brognara, A.; Best, J. P.; Djemia, P.; Faurie, D.; Ghidelli, M.; Dehm, G.: Effect of composition on mechanical properties and thermal stability of ZrCu thin film metallic glasses. European Materials Research Society (E-MRS) Spring Meeting 2021, Virtual Conference, Strasbourg, France (2021)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In this project we developed a phase-field model capable of describing multi-component and multi-sublattice ordered phases, by directly incorporating the compound energy CALPHAD formalism based on chemical potentials. We investigated the complex compositional pathway for the formation of the η-phase in Al-Zn-Mg-Cu alloys during commercial…
Hydrogen embrittlement (HE) of steel is a great challenge in engineering applications. However, the HE mechanisms are not fully understood. Conventional studies of HE are mostly based on post mortem observations of the microstructure evolution and those results can be misleading due to intermediate H diffusion. Therefore, experiments with a…
This project aims to investigate the influence of grain boundaries on mechanical behavior at ultra-high strain rates and low temperatures. For this micropillar compressions on copper bi-crystals containing different grain boundaries will be performed.
The objective of the project is to investigate grain boundary precipitation in comparison to bulk precipitation in a model Al-Zn-Mg-Cu alloy during aging.