Tasan, C. C.; Yan, D.; Raabe, D.: A novel, high-resolution approach for concurrent mapping of micro-strain and micro-structure evolution up to damage nucleation. TMS 2015, Orlando, FL, USA (2015)
Morsdorf, L.; Tasan, C. C.; Ponge, D.; Raabe, D.: Lath martensite transformation, µ-plasticity and tempering reactions: potential TEM aids. Seminar at Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany (2015)
Herbig, M.; Marceau, R. K. W.; Morsdorf, L.; Raabe, D.: Spinodal Decomposition of Fe–Ni–C Martensite by Room Temperature Redistribution of Carbon Investigated by Correlative ECCI/TEM/APT. PTM 2015, Whistler, BC, Canada (2015)
Kuzmina, M.; Herbig, M.; Ponge, D.; Sandlöbes, S.; Raabe, D.: Linear Complexions: Confined Chemical and Structural States at Dislocations in Metallic Alloys. MRS Fall Meeting & Exhibit, Boston, MA, USA (2015)
Diehl, M.; Shanthraj, P.; Roters, F.; Tasan, C. C.; Raabe, D.: A Virtual Laboratory to Derive Mechanical Properties. M2i Conference "High Tech Materials: your world - our business"
, Sint Michielgestel, The Netherlands (2014)
Haghighat, S. M. H.; Li, Z.; Zaefferer, S.; Reed, R. C.; Raabe, D.: Mesoscale modeling of dislocation climb and primary creep process in single crystal Ni base superalloys. International Workshop on Dislocation Dynamics Simulations, Saclay, France (2014)
Cojocaru-Mirédin, O.; Stoffers, A.; Soni, P. U.; Würz, R.; Raabe, D.: Interfaces in Semiconductors: Application to photovoltaic materials. 61st American Vacuum Society International conference, Baltimore, MA, USA (2014)
Herbig, M.; Raabe, D.; Li, Y.; Choi, P.-P.; Zaefferer, S.; Goto, S.: Joint crystallographic and chemical characterization at the nanometer scale by correlative TEM and atom probe tomography. Workshop: White-etching layers in ball and roller bearings, Informatik-Zentrum Hörn, Aachen, Germany (2014)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In this ongoing project, we investigate spinodal fluctuations at crystal defects such as grain boundaries and dislocations in Fe-Mn alloys using atom probe tomography, electron microscopy and thermodynamic modeling [1,2].
The aim of the Additive micromanufacturing (AMMicro) project is to fabricate advanced multimaterial/multiphase MEMS devices with superior impact-resistance and self-damage sensing mechanisms.
TiAl-based alloys currently mature into application. Sufficient strength at high temperatures and ductility at ambient temperatures are crucial issues for these novel light-weight materials. By generation of two-phase lamellar TiAl + Ti3Al microstructures, these issues can be successfully solved. Because oxidation resistance at high temperatures is…
We will investigate the electrothermomechanical response of individual metallic nanowires as a function of microstructural interfaces from the growth processes. This will be accomplished using in situ SEM 4-point probe-based electrical resistivity measurements and 2-point probe-based impedance measurements, as a function of mechanical strain and…